当前位置: X-MOL 学术Chemosphere › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Degradation and mechanism of PFOA by peroxymonosulfate activated by nitrogen-doped carbon foam-anchored nZVI in aqueous solutions
Chemosphere ( IF 8.1 ) Pub Date : 2024-01-13 , DOI: 10.1016/j.chemosphere.2024.141209
Changyu Li 1 , Cong Shen 2 , Bin Gao 3 , Wenxu Liang 2 , Yifan Zhu 2 , Weijie Shi 2 , Shiyun Ai 2 , Hongxia Xu 1 , Jichun Wu 1 , Yuanyuan Sun 1
Affiliation  

Perfluorooctanoic acid (PFOA) is an emerging pollutant that is non-biodegradable and presents severe environmental and human health risks. In this study, we present an effective and mild approach for PFOA degradation that involves the use of nitrogen-doped carbon foam anchored with nanoscale zero-valent iron (nZVI@NCF) to activate low concentration peroxymonosulfate (PMS) for the treatment. The nZVI@NCF/PMS system efficiently removed 84.4% of PFOA (2.4 μM). The active sites of nZVI@NCF including Fe (110) and graphitic nitrogen played crucial roles in the degradation. Electrochemical analyses and density functional theory calculations revealed that nZVI@NCF acted as an electronic donor, transferring electrons to both PMS and PFOA during the reaction. By further analyzing the electron paramagnetic resonance and byproducts, it was determined that electron transfer and singlet oxygen were responsible for PFOA degradation. Three degradation pathways involving decarboxylation and surface reduction of PFOA in the nZVI@NCF/PMS system were determined. Finding from this study indicate that nZVI@NCF/PMS systems are effective in degrading PFOA and thus present a promising persulfate-advanced oxidation process technology for PFAS treatment.

中文翻译:


水溶液中掺氮碳泡沫锚定nZVI活化过一硫酸盐降解PFOA及其机理



全氟辛酸(PFOA)是一种不可生物降解的新兴污染物,对环境和人类健康构成严重风险。在这项研究中,我们提出了一种有效且温和的 PFOA 降解方法,其中涉及使用锚定纳米级零价铁 (nZVI@NCF) 的氮掺杂碳泡沫来激活低浓度过一硫酸盐 (PMS) 进行处理。 nZVI@NCF/PMS 系统可有效去除 84.4% 的 PFOA (2.4 μM)。 nZVI@NCF 的活性位点包括 Fe (110) 和石墨氮在降解中发挥着至关重要的作用。电化学分析和密度泛函理论计算表明,nZVI@NCF 作为电子供体,在反应过程中将电子转移到 PMS 和 PFOA。通过进一步分析电子顺磁共振和副产物,确定电子转移和单线态氧是 PFOA 降解的原因。确定了 nZVI@NCF/PMS 系统中涉及 PFOA 脱羧和表面还原的三种降解途径。这项研究的结果表明,nZVI@NCF/PMS 系统可有效降解 PFOA,从而为 PFAS 处理提供了一种有前景的过硫酸盐高级氧化工艺技术。
更新日期:2024-01-13
down
wechat
bug