Colloids and Surfaces A: Physicochemical and Engineering Aspects ( IF 4.9 ) Pub Date : 2024-01-11 , DOI: 10.1016/j.colsurfa.2024.133165 Wei Yong , Zhijie Wei , Yingfang Zhou
Molecular Dynamics (MD) simulations of oil droplet displacement have been performed using pressure driven surfactant flooding at typical reservoir condition (330 K and 20 MPa). The behavior of the micellization of surfactant molecules has been validated. A micelle with a radius of 22.85 Å is formed by 60 anionic sodium dodecyl benzenesulfonate (SDBS) surfactant molecules in aqueous solution. Surfactant additions result in significant reduction of interfacial tension (IFT) for oil/water system and such reduction is dependent on surfactant surface concentration. The microscopic mechanism of IFT reduction is described. Interfacial thickness increases from 3.5 Å to 22.5 Å at 300 K and1 atm after surfactant molecules are adsorbed at oil/water interface, indicating high miscibility of two phases and thus results in interfacial tension reduction; the calculated interface formation energy of a single surfactant molecule is -145.7 Kcal/mol, which means the additions of surfactant would lead to the decrease of system energy and thus a more steady system. For surfactant flooding simulation, oil droplet static contact angle increases with surfactant additions. The larger the static contact angle of oil droplet, the stronger the drop deformation and the higher the displacement speed. Limited deformation is observed as oil droplet detaches from the solid substrate. Compared with water flooding, surfactant additions can significantly increase oil displacement speed by up to 80%.
中文翻译:
纳米二氧化硅孔隙中表面活性剂驱油的分子动力学模拟
在典型油藏条件下,使用压力驱动的表面活性剂驱油进行了油滴驱替的分子动力学 (MD) 模拟(330 K 和20 兆帕)。表面活性剂分子的胶束化行为已得到验证。60 个阴离子 十二烷基苯磺酸钠 (SDBS) 表面活性剂分子在水溶液中形成半径为 22.85 Å 的胶束。添加表面活性剂可显着降低油/水系统的界面张力 (IFT),这种降低取决于表面活性剂的表面浓度。描述了 IFT 降低的微观机制。界面厚度从 3.5 Å 增加到 22.5 Å300 K 和 表面活性剂分子吸附在油水界面后1atm,表明两相高度混溶,从而导致界面张力降低;计算得到单个表面活性剂分子的界面形成能为-145.7 Kcal/mol,这意味着表面活性剂的加入会导致体系能量降低,从而使体系更加稳定。对于表面活性剂驱模拟,油滴静态接触角随着表面活性剂的添加而增加。油滴的静态接触角越大,液滴变形越强,位移速度越高。当油滴从固体基质上分离时,观察到有限的变形。与水驱相比,添加表面活性剂可显着提高驱油速度,最高可达80%。