当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fluorinated Defect-Engineered Acetylenic Polymers with Separated Active Centers for Switching the Photosensitized Activation Pathway of Peroxymonosulfate
ACS Catalysis ( IF 11.3 ) Pub Date : 2024-01-11 , DOI: 10.1021/acscatal.3c03830 Tao Zeng 1, 2 , Xiaofeng Tang 1 , Xinyi Cai 1, 3 , Sijia Jin 1 , Yi Zhu 1 , Wenyu Xu 3 , Shuang Song 1 , Haiyan Zhang 1, 3
ACS Catalysis ( IF 11.3 ) Pub Date : 2024-01-11 , DOI: 10.1021/acscatal.3c03830 Tao Zeng 1, 2 , Xiaofeng Tang 1 , Xinyi Cai 1, 3 , Sijia Jin 1 , Yi Zhu 1 , Wenyu Xu 3 , Shuang Song 1 , Haiyan Zhang 1, 3
Affiliation
The engineering of conjugated acetylenic polymers (CAPs) has great potential for photosensitized oxyanion activation, wherein their catalytic performance can be further advanced by incorporating artificial defects, while relevant reports are rare. Herein, we deliberately introduce the fluorinated defect into the structure of poly(1,3,5-triethynylbenzene) (PTEB) via copper-surface mediated Glaser polycondensation (denote as PTEB-Fx). PTEB-Fx exhibits a surface with an abundance of acetylene moieties that possess a strong affinity for capturing oxyanions through preferential binding to peroxy-bonds of oxyanions. Meanwhile, the adjacent fluorinated defects effectively delocalize π-electrons, narrow the optical bandgap, and facilitate charge separation, thereby optimizing kinetics and thermodynamics of peroxymonosulfate (PMS) activation. Such spatial separated active centers leads to a synergistic effect involving the enhanced oxidation ability of holes (h+) and the elongation of the O–H bond in PMS, which triggers a switch in the activation pathway toward oxidative activation for the generation of singlet oxygen (1O2), as opposed to the conventional reductive activation course yielding radical species (•OH and SO4•–). Additionally, PTEB-Fx featuring inherent self-standing merit overcomes challenges associated with limited light energy utilization and the cumbersome retrieval of powder photosensitizers, thus broadening its potential for large-scale application.
中文翻译:
具有独立活性中心的氟化缺陷工程乙炔聚合物用于切换过一硫酸盐的光敏激活途径
共轭乙炔聚合物(CAPs)的工程在光敏氧阴离子活化方面具有巨大的潜力,其中通过引入人工缺陷可以进一步提高其催化性能,但相关报道很少。在此,我们有意通过铜表面介导的格拉泽缩聚将氟化缺陷引入聚(1,3,5-三乙炔基苯)(PTEB)的结构中(表示为PTEB-F x )。 PTEB-F x的表面具有丰富的乙炔部分,通过优先结合氧阴离子的过氧键,对捕获氧阴离子具有很强的亲和力。同时,相邻的氟化缺陷有效地使π电子离域,缩小光学带隙,促进电荷分离,从而优化过一硫酸盐(PMS)活化的动力学和热力学。这种空间分离的活性中心会产生协同效应,涉及空穴(h +)氧化能力的增强和 PMS 中 O-H 键的伸长,从而触发激活途径向氧化激活的转变,从而产生单线态氧( 1 O 2 ),与产生自由基物质(•OH和SO 4 •– )的传统还原活化过程相反。此外,PTEB-F x具有固有的自支撑优点,克服了光能利用有限和粉末光敏剂回收繁琐的挑战,从而拓宽了其大规模应用的潜力。
更新日期:2024-01-11
中文翻译:
具有独立活性中心的氟化缺陷工程乙炔聚合物用于切换过一硫酸盐的光敏激活途径
共轭乙炔聚合物(CAPs)的工程在光敏氧阴离子活化方面具有巨大的潜力,其中通过引入人工缺陷可以进一步提高其催化性能,但相关报道很少。在此,我们有意通过铜表面介导的格拉泽缩聚将氟化缺陷引入聚(1,3,5-三乙炔基苯)(PTEB)的结构中(表示为PTEB-F x )。 PTEB-F x的表面具有丰富的乙炔部分,通过优先结合氧阴离子的过氧键,对捕获氧阴离子具有很强的亲和力。同时,相邻的氟化缺陷有效地使π电子离域,缩小光学带隙,促进电荷分离,从而优化过一硫酸盐(PMS)活化的动力学和热力学。这种空间分离的活性中心会产生协同效应,涉及空穴(h +)氧化能力的增强和 PMS 中 O-H 键的伸长,从而触发激活途径向氧化激活的转变,从而产生单线态氧( 1 O 2 ),与产生自由基物质(•OH和SO 4 •– )的传统还原活化过程相反。此外,PTEB-F x具有固有的自支撑优点,克服了光能利用有限和粉末光敏剂回收繁琐的挑战,从而拓宽了其大规模应用的潜力。