当前位置: X-MOL 学术Catal. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular palladium catalyst enabling efficient electrochemical C–C bond cleavage within lignin model compounds
Catalysis Science & Technology ( IF 4.4 ) Pub Date : 2024-01-09 , DOI: 10.1039/d3cy01676e
Peidong Ren 1 , Lei Shi 1 , Ziwang Kan 1 , Jiaxiao Bai 1 , Yunyi Liu 1 , Shucheng Yang 1 , Siqi Li 1 , Song Liu 1
Affiliation  

The electrochemical conversion of lignin for the production of high-value aromatic compounds holds immense potential. However, the process of depolymerizing lignin faces significant challenges due to its intricate structure, particularly the existence of C–C bonds, resulting in low conversion and product yields. In this work, we report the successful synthesis of a molecular palladium catalyst and its inaugural application in the electrochemical conversion of lignin model compounds. This catalyst with well-defined coordination structure demonstrates exceptional efficacy and achieves a remarkable 99% conversion rate for the lignin model compound 2-phenoxy-1-phenylethanol with a yield of 32% of the benzaldehyde product while valuable hydrogen is produced at the electrode under ambient conditions. Furthermore, employing radical trapping and EPR test point that the tBuO˙ radical was the key to inducing C–C cleavage for high conversion and enabled a comprehensive elucidation of the possible reaction pathways involving radical/radical cross-coupling. Based on this study, we believe that molecular catalysts will open a new chapter in the electrocatalytic conversion of lignin.

中文翻译:

分子钯催化剂可在木质素模型化合物中实现高效的电化学 C-C 键断裂

木质素的电化学转化用于生产高价值芳香族化合物具有巨大的潜力。然而,由于其复杂的结构,特别是C-C键的存在,木质素的解聚过程面临重大挑战,导致转化率和产品收率较低。在这项工作中,我们报告了分子钯催化剂的成功合成及其在木质素模型化合物电化学转化中的首次应用。这种具有明确配位结构的催化剂表现出卓越的功效,木质素模型化合物 2-苯氧基-1-苯基乙醇的转化率高达 99%,苯甲醛产品的产率为 32%,同时在电极上产生有价值的氢气。环境条件。此外,采用自由基捕获和 EPR 测试点发现t BuO˙ 自由基是诱导 C-C 裂解以获得高转化率的关键,并能够全面阐明涉及自由基/自由基交叉偶联的可能反应途径。基于这项研究,我们相信分子催化剂将开启木质素电催化转化的新篇章。
更新日期:2024-01-09
down
wechat
bug