当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Infiltrating Perfluorocarbon Nanoemulsion and Sensitizing Ultrasound Cavitation to Eradicate Biofilms
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-01-08 , DOI: 10.1021/acsami.3c15167 Ruihao Yang 1 , Haoran Zhang 2 , Zeinab Marfavi 1 , Quanjie Lv 1 , Yijun Han 1 , Kang Sun 1 , Congli Yuan 2 , Ke Tao 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-01-08 , DOI: 10.1021/acsami.3c15167 Ruihao Yang 1 , Haoran Zhang 2 , Zeinab Marfavi 1 , Quanjie Lv 1 , Yijun Han 1 , Kang Sun 1 , Congli Yuan 2 , Ke Tao 1
Affiliation
Developing strategies for the treatment of bacterial biofilms is challenging due to their complex and resilient structure, low permeability to therapeutics, and ability to protect resident pathogens. Herein, we demonstrate that a polylysine-stabilized perfluorocarbon nanoemulsion is favored for penetrating biofilms and sensitizing the cavitation effect of low-intensity ultrasound, resulting in the dispersal of extracellular polymeric substances and killing of the protected cells. Through experiments, we observed a complete penetration of the nanoemulsion in a 40 μm Pseudomonas aeruginosa biofilm and demonstrated that it was induced by the fluidic perfluorocarbon, possibly attributing to its low surface tension. Furthermore, we presented an almost complete antibiofilm effect with a low-intensity ultrasound (1 MHz, 0.75 W/cm2, 5 min) in diverse cases, including cultured biofilms, colonized urinary catheters, and chronic wounds. During the treatment process, the perfluorocarbon phase enhanced the number and imploding energy of ultrasound cavities, thoroughly divided the biofilm structure, prevented biofilm self-healing, and sterilized the resident pathogens. Thus, the penetration and sensitization of the nanoemulsion might serve as a facile and potent strategy for eradicating biofilms in various applications.
中文翻译:
渗透全氟化碳纳米乳液和敏化超声空化消除生物膜
由于细菌生物膜结构复杂且有弹性、治疗药物渗透性低以及保护常驻病原体的能力,制定治疗细菌生物膜的策略具有挑战性。在此,我们证明聚赖氨酸稳定的全氟化碳纳米乳液有利于穿透生物膜并敏化低强度超声的空化效应,导致细胞外聚合物质的分散并杀死受保护的细胞。通过实验,我们观察到纳米乳液在 40 μm铜绿假单胞菌生物膜中完全渗透,并证明这是由流体全氟化碳诱导的,可能归因于其低表面张力。此外,我们在不同的情况下,包括培养的生物膜、定植的导尿管和慢性伤口,展示了低强度超声(1 MHz,0.75 W/cm 2 ,5 分钟)几乎完全的抗生物膜效果。在处理过程中,全氟化碳相增强了超声空腔的数量和内爆能量,彻底分割生物膜结构,防止生物膜自愈,并对常驻病原体进行杀灭。因此,纳米乳液的渗透和敏化可能成为在各种应用中根除生物膜的简便而有效的策略。
更新日期:2024-01-08
中文翻译:
渗透全氟化碳纳米乳液和敏化超声空化消除生物膜
由于细菌生物膜结构复杂且有弹性、治疗药物渗透性低以及保护常驻病原体的能力,制定治疗细菌生物膜的策略具有挑战性。在此,我们证明聚赖氨酸稳定的全氟化碳纳米乳液有利于穿透生物膜并敏化低强度超声的空化效应,导致细胞外聚合物质的分散并杀死受保护的细胞。通过实验,我们观察到纳米乳液在 40 μm铜绿假单胞菌生物膜中完全渗透,并证明这是由流体全氟化碳诱导的,可能归因于其低表面张力。此外,我们在不同的情况下,包括培养的生物膜、定植的导尿管和慢性伤口,展示了低强度超声(1 MHz,0.75 W/cm 2 ,5 分钟)几乎完全的抗生物膜效果。在处理过程中,全氟化碳相增强了超声空腔的数量和内爆能量,彻底分割生物膜结构,防止生物膜自愈,并对常驻病原体进行杀灭。因此,纳米乳液的渗透和敏化可能成为在各种应用中根除生物膜的简便而有效的策略。