Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Trifunctional L-Cysteine Assisted Construction of MoO2/MoS2/C Nanoarchitecture Toward High-Rate Sodium Storage
Small ( IF 13.0 ) Pub Date : 2024-01-08 , DOI: 10.1002/smll.202307986 Feilong Gong 1 , Zhilin Chen 1 , Yang Zhao 2 , Hongge Zhang 1 , Guang Zeng 2 , Cuijie Yao 1 , Lihua Gong 1 , Yonghui Zhang 1 , Jian Liu 2, 3, 4 , Shizhong Wei 1
Small ( IF 13.0 ) Pub Date : 2024-01-08 , DOI: 10.1002/smll.202307986 Feilong Gong 1 , Zhilin Chen 1 , Yang Zhao 2 , Hongge Zhang 1 , Guang Zeng 2 , Cuijie Yao 1 , Lihua Gong 1 , Yonghui Zhang 1 , Jian Liu 2, 3, 4 , Shizhong Wei 1
Affiliation
The volume collapse and slow kinetics reaction of anode materials are two key issues for sodium ion batteries (SIBs). Herein, an “embryo” strategy is proposed for synthesis of nanorod–embedded MoO2/MoS2/C network nanoarchitecture as anode for SIBs with high-rate performance. Interestingly, L-cysteine which plays triple roles including sulfur source, reductant, and carbon source can be utilized to produce the sulfur vacancy–enriched heterostructure. Specifically, L-cysteine can combine with metastable monoclinic MoO3 nanorods at room temperature to encapsulate the “nutrient” of MoOx analogues (MoO2.5(OH)0.5 and MoO3·0.5H2O) and hydrogen-deficient L-cysteine in the “embryo” precursor affording for subsequent in situ multistep heating treatment. The resultant MoO2/MoS2/C presents a high-rate capability of 875 and 420 mAh g−1 at 0.5 and 10 A g−1, respectively, which are much better than the MoS2-based anode materials reported by far. Finite element simulation and analysis results verify that the volume expansion can be reduced to 42.8% from 88.8% when building nanorod–embedded porous network structure. Theoretical calculations reveal that the sulfur vacancies and heterointerface engineering can promote the adsorption and migration of Na+ leading to highly enhanced thermodynamic and kinetic reaction. The work provides an efficient approach to develop advanced electrode materials for energy storage.
中文翻译:
三功能L-半胱氨酸辅助构建MoO2/MoS2/C纳米结构以实现高速率钠存储
负极材料的体积塌陷和缓慢的动力学反应是钠离子电池(SIB)的两个关键问题。在此,提出了一种“胚胎”策略来合成纳米棒嵌入的MoO 2 /MoS 2 /C网络纳米结构作为具有高倍率性能的SIB的阳极。有趣的是,L-半胱氨酸具有硫源、还原剂和碳源三重作用,可用于制备富含硫空位的异质结构。具体来说,L-半胱氨酸可以在室温下与亚稳态单斜MoO 3纳米棒结合,将MoO x类似物(MoO 2.5 (OH) 0.5和MoO 3 ·0.5H 2 O)和缺氢L-半胱氨酸的“养分”封装在“胚胎”前体提供随后的原位多步加热处理。所得MoO 2 /MoS 2 /C在0.5和10 A g -1下分别表现出875和420 mAh g -1的高倍率性能,这比迄今为止报道的MoS 2基负极材料要好得多。有限元模拟和分析结果验证了构建纳米棒嵌入多孔网络结构时体积膨胀可以从88.8%降低到42.8%。理论计算表明,硫空位和异质界面工程可以促进Na +的吸附和迁移,从而导致热力学和动力学反应高度增强。这项工作为开发先进的储能电极材料提供了一种有效的方法。
更新日期:2024-01-08
中文翻译:
三功能L-半胱氨酸辅助构建MoO2/MoS2/C纳米结构以实现高速率钠存储
负极材料的体积塌陷和缓慢的动力学反应是钠离子电池(SIB)的两个关键问题。在此,提出了一种“胚胎”策略来合成纳米棒嵌入的MoO 2 /MoS 2 /C网络纳米结构作为具有高倍率性能的SIB的阳极。有趣的是,L-半胱氨酸具有硫源、还原剂和碳源三重作用,可用于制备富含硫空位的异质结构。具体来说,L-半胱氨酸可以在室温下与亚稳态单斜MoO 3纳米棒结合,将MoO x类似物(MoO 2.5 (OH) 0.5和MoO 3 ·0.5H 2 O)和缺氢L-半胱氨酸的“养分”封装在“胚胎”前体提供随后的原位多步加热处理。所得MoO 2 /MoS 2 /C在0.5和10 A g -1下分别表现出875和420 mAh g -1的高倍率性能,这比迄今为止报道的MoS 2基负极材料要好得多。有限元模拟和分析结果验证了构建纳米棒嵌入多孔网络结构时体积膨胀可以从88.8%降低到42.8%。理论计算表明,硫空位和异质界面工程可以促进Na +的吸附和迁移,从而导致热力学和动力学反应高度增强。这项工作为开发先进的储能电极材料提供了一种有效的方法。