Nature Materials ( IF 37.2 ) Pub Date : 2024-01-08 , DOI: 10.1038/s41563-023-01788-7 Lok Wing Wong 1, 2 , Ke Yang 1, 2 , Wei Han 1, 2 , Xiaodong Zheng 1, 2 , Hok Yin Wong 1, 2 , Chi Shing Tsang 1, 2 , Chun-Sing Lee 3 , Shu Ping Lau 1 , Thuc Hue Ly 3, 4, 5 , Ming Yang 1, 2 , Jiong Zhao 1, 2, 6
The quest for electronic devices that offer flexibility, wearability, durability and high performance has spotlighted two-dimensional (2D) van der Waals materials as potential next-generation semiconductors. Especially noteworthy is indium selenide, which has demonstrated surprising ultra-high plasticity. To deepen our understanding of this unusual plasticity in 2D van der Waals materials and to explore inorganic plastic semiconductors, we have conducted in-depth experimental and theoretical investigations on metal monochalcogenides (MX) and transition metal dichalcogenides (MX2). We have discovered a general plastic deformation mode in MX, which is facilitated by the synergetic effect of phase transitions, interlayer gliding and micro-cracks. This is in contrast to crystals with strong atomic bonding, such as metals and ceramics, where plasticity is primarily driven by dislocations, twinning or grain boundaries. The enhancement of gliding barriers prevents macroscopic fractures through a pinning effect after changes in stacking order. The discovery of ultra-high plasticity and the phase transition mechanism in 2D MX materials holds significant potential for the design and development of high-performance inorganic plastic semiconductors.
中文翻译:
解读金属单硫族化物的超高塑性
对具有灵活性、耐磨性、耐用性和高性能的电子设备的追求使得二维 (2D) 范德华材料成为潜在的下一代半导体。尤其值得注意的是硒化铟,它表现出了令人惊讶的超高可塑性。为了加深对二维范德华材料中这种不寻常的可塑性的理解并探索无机塑料半导体,我们对金属单硫属化物(MX)和过渡金属二硫属化物(MX 2 )进行了深入的实验和理论研究。我们发现了 MX 中的通用塑性变形模式,该模式是由相变、层间滑移和微裂纹的协同效应促进的。这与具有强原子键合的晶体形成鲜明对比,例如金属和陶瓷,其中可塑性主要由位错、孪晶或晶界驱动。滑动屏障的增强可以通过改变堆叠顺序后的钉扎效应来防止宏观断裂。 2D MX 材料中超高塑性和相变机制的发现对于高性能无机塑料半导体的设计和开发具有巨大潜力。