在这项研究中,结合使用基于同步辐射的技术(如 XAFS 和 XRF)以及其他一些实验室技术(如 XRD、XPS、FESEM 和 HRTEM),对纳米结构的 Bi2Te3 (BT) 热电材料进行了全面研究。本研究旨在跟踪 Bi2Te3 两个不同阶段的形态、组成、平均和局部/电子结构的变化;纳米结构(薄膜)和纳米粉末 (NP)。Bi2Te3 纳米材料采用一步法的区域熔化工艺制成颗粒,而 Bi2Te3 薄膜则使用真空热蒸发技术沉积在钠钙玻璃基板上。采用基于同步辐射的 Bi LIII 边缘荧光模式 X 射线吸收精细结构 (XAFS) 技术,局部探测 Bi 原子周围 BT 薄膜的电子和精细结构,同时透射模式 XAFS 用于分布在 PVP 基体中的 BT NPs。将收集的 BT 薄膜和粉末样品的 Bi LIII XANES 光谱的结构特征与使用 FDMNES 代码在 5 Å 簇大小下计算的 BT 模拟 XANES 光谱进行了比较。 将不同的离线结构表征技术(XRD、FESEM、XPS 和 HRTEM)与基于同步辐射的技术(XAFS 和 XRF)相结合,对于互补和支持的平均晶体、化学、形态和局部电子结构分析是必要的,以揭示 Bi2Te3 之间的差异在纳米结构/薄膜和纳米粉末形态中,然后在两种不同形态中连接 BT 的结构特征和功能。之后,我们测量了 BT 纳米粉末和薄膜的塞贝克系数和功率因数值。
"点击查看英文标题和摘要"
Comprehensive study of nanostructured Bi2Te3 thermoelectric materials – insights from synchrotron radiation XRD, XAFS, and XRF techniques
In this contribution, a comprehensive study of nanostructured Bi2Te3 (BT) thermoelectric material was performed using a combination of synchrotron radiation-based techniques such as XAFS, and XRF, along with some other laboratory techniques such as XRD, XPS, FESEM, and HRTEM. This study aims to track the change in morphological, compositional, average and local/electronic structures of Bi2Te3 of two different phases; nanostructure (thin film) and nanopowders (NPs). Bi2Te3 nanomaterial was fabricated as pellets using zone melting process in a one step process, while Bi2Te3 thin film was deposited on sodalime glass substrate using a vacuum thermal evaporation technique. Synchrotron radiation-based Bi LIII-edge fluorescence-mode X-ray absorption fine structure (XAFS) technique was performed to probe locally the electronic and fine structures of BT thin film around the Bi atom, while transmission-mode XAFS was used for BT NPs distributed in the PVP matrix. The structural features of the collected Bi LIII XANES spectra of thin film and powder samples of BT are compared with the simulated XANES spectrum of BT calculated using FDMNES code at 5 Å cluster size. Combining different off-line structural characterization techniques (XRD, FESEM, XPS, and HRTEM), along with those of synchrotron radiation-based techniques (XAFS and XRF) is necessary for complementary and supported average crystal, chemical, morphological and local electronic structural analyses for unveiling the variation between Bi2Te3 in the nanostructure/thin film and nanopowder morphology, and then connecting between the structural features and functions of BT in two different morphologies. After that, we measured the Seebeck coefficient and the power factor values for both the BT nanopowder and thin film.