当前位置: X-MOL 学术Int. J. Mach. Tool Manu. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomic-scale smoothing of semiconducting oxides via plasma-enabled atomic-scale reconstruction
International Journal of Machine Tools and Manufacture ( IF 14.0 ) Pub Date : 2024-01-07 , DOI: 10.1016/j.ijmachtools.2024.104119
Yongjie Zhang , Jin Tang , Shaoxiang Liang , Junlei Zhao , Mengyuan Hua , Chun Zhang , Hui Deng

β-Ga2O3, known as a next-generation wide-bandgap transparent semiconducting oxide (TSO), has considerable application potential in ultra-high-power and high-temperature devices. However, fabricating a smooth β-Ga2O3 substrate is challenging owing to its strong mechanical strength and chemical stability. In this study, an atomic-scale smoothing method named plasma-enabled atomic-scale reconstruction (PEAR) is proposed. We find that three reconstruction modes, namely, 2D-island, step-flow, and step-bunching, can be identified with the increase in the input power; only the step-flow mode can result in the formation of an atomically smooth β-Ga2O3 surface (Sa = 0.098 nm). Various surface and subsurface characterizations indicate that the smooth β-Ga2O3 surface shows excellent surface integrity, high crystalline quality, and remarkable photoelectric properties. The atomic-scale density functional theory-based calculations show that the diffusion energy barrier of a Ga atom is only 0.46 eV, thereby supporting the atomic mass migration induced by high-energy plasma irradiation in the experiment. Nanoscale molecular dynamics simulations reveal that O atoms firstly migrate to crystallization sites, followed by Ga atoms with a lower migration rate; reconstruction mainly proceeds along the <010> direction and then expands along the <100> and <001> directions. The millimeter-scale numerical simulations based on the finite element method demonstrate that the coupling of the thermal and flow fields of plasma is the impetus for PEAR of β-Ga2O3. Furthermore, the smoothing generality of PEAR is demonstrated by extending it to other common TSOs (α-Al2O3, ZnO, and MgO). As a typical plasma-based atomic-scale smoothing method, PEAR is expected to enrich the theoretical and technological knowledge on atomic-scale manufacturing.



中文翻译:

通过等离子体原子级重建实现半导体氧化物的原子级平滑

β -Ga 2 O 3被称为下一代宽带隙透明半导体氧化物(TSO),在超高功率和高温器件中具有巨大的应用潜力。然而,由于其强大的机械强度和化学稳定性,制造光滑的β -Ga 2 O 3衬底具有挑战性。在这项研究中,提出了一种称为等离子体原子尺度重建(PEAR)的原子尺度平滑方法。我们发现随着输入功率的增加,可以识别出三种重建模式,即二维岛、阶梯流和阶梯聚束;只有阶梯流模式才能形成原子级光滑的β -Ga 2 O 3表面( Sa = 0.098 nm)。各种表面和亚表面表征表明,光滑的β -Ga 2 O 3表面表现出优异的表面完整性、高结晶质量和卓越的光电性能。基于原子尺度密度泛函理论的计算表明,Ga原子的扩散能垒仅为0.46 eV,从而支持了实验中高能等离子体辐照引起的原子质量迁移。纳米级分子动力学模拟表明,O原子首先迁移到结晶位点,其次是迁移速率较低的Ga原子;重建主要沿<010>方向进行,然后沿<100>和<001>方向扩展。基于有限元方法的毫米级数值模拟表明,等离子体热场与流场的耦合是β -Ga 2 O 3 PEAR的推动力。此外,通过将 PEAR 扩展到其他常见的 TSO(α -Al 2 O 3、ZnO 和 MgO),证明了 PEAR 的平滑通用性。作为一种典型的基于等离子体的原子级平滑方法,PEAR有望丰富原子级制造的理论和技术知识。

更新日期:2024-01-07
down
wechat
bug