当前位置: X-MOL 学术J. Comb. Theory B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Count and cofactor matroids of highly connected graphs
Journal of Combinatorial Theory Series B ( IF 1.2 ) Pub Date : 2024-01-05 , DOI: 10.1016/j.jctb.2023.12.004
Dániel Garamvölgyi , Tibor Jordán , Csaba Király

We consider two types of matroids defined on the edge set of a graph G: count matroids Mk,(G), in which independence is defined by a sparsity count involving the parameters k and , and the C21-cofactor matroid C(G), in which independence is defined by linear independence in the cofactor matrix of G. We show, for each pair (k,), that if G is sufficiently highly connected, then Ge has maximum rank for all eE(G), and the matroid Mk,(G) is connected. These results unify and extend several previous results, including theorems of Nash-Williams and Tutte (k==1), and Lovász and Yemini (k=2,=3). We also prove that if G is highly connected, then the vertical connectivity of C(G) is also high.

We use these results to generalize Whitney's celebrated result on the graphic matroid of G (which corresponds to M1,1(G)) to all count matroids and to the C21-cofactor matroid: if G is highly connected, depending on k and , then the count matroid Mk,(G) uniquely determines G; and similarly, if G is 14-connected, then its C21-cofactor matroid C(G) uniquely determines G. We also derive similar results for the t-fold union of the C21-cofactor matroid, and use them to prove that every 24-connected graph has a spanning tree T for which GE(T) is 3-connected, which verifies a case of a conjecture of Kriesell.



中文翻译:

高度连通图的计数和辅因子拟阵

我们考虑在图G的边集上定义的两种类型的拟阵:计数拟阵中号k,G,其中独立性由涉及参数k的稀疏性计数定义,并且C21-辅助因子拟阵CG,其中独立性由G的辅因子矩阵中的线性独立性定义。我们展示,对于每一对k,,如果G足够高度连通,则G-e所有人的排名最高eεG,和拟阵中号k,G已连接。这些结果统一并扩展了之前的几个结果,包括 Nash-Williams 和 Tutte 定理(k==1)、Lovász 和 Yemini(k=2,=3)。我们还证明,如果G是高度连通的,则CG也很高。

我们使用这些结果来概括 Whitney 在G的图形拟阵上的著名结果(对应于中号1,1G)到所有计数拟阵和C21-cofactor matroid:如果G是高度连通的,取决于k,则计数矩阵中号k,G唯一确定G;类似地,如果G是 14 连通的,那么它的C21-辅助因子拟阵CG唯一确定G。我们还对t折叠并集得出了类似的结果C21-cofactor matroid,并用它们证明每个24连通图都有一个生成树T,其中G-时间是3连通的,验证了Kriesell猜想的一个例子。

更新日期:2024-01-07
down
wechat
bug