当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Decoupling Carrier-Phonon Scattering Boosts the Thermoelectric Performance of n-Type GeTe-Based Materials
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-01-04 , DOI: 10.1021/jacs.3c12546 De-Zhuang Wang 1 , Wei-Di Liu 2, 3 , Yuanqing Mao 4, 5 , Shuai Li 1 , Liang-Cao Yin 1 , Hao Wu 1 , Meng Li 3 , Yifeng Wang 6 , Xiao-Lei Shi 3 , Xiaoning Yang 1 , Qingfeng Liu 1 , Zhi-Gang Chen 3
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-01-04 , DOI: 10.1021/jacs.3c12546 De-Zhuang Wang 1 , Wei-Di Liu 2, 3 , Yuanqing Mao 4, 5 , Shuai Li 1 , Liang-Cao Yin 1 , Hao Wu 1 , Meng Li 3 , Yifeng Wang 6 , Xiao-Lei Shi 3 , Xiaoning Yang 1 , Qingfeng Liu 1 , Zhi-Gang Chen 3
Affiliation
The coupled relationship between carrier and phonon scattering severely limits the thermoelectric performance of n-type GeTe materials. Here, we provide an efficient strategy to enlarge grains and induce vacancy clusters for decoupling carrier-phonon scattering through the annealing optimization of n-type GeTe-based materials. Specifically, boundary migration is used to enlarge grains by optimizing the annealing time, while vacancy clusters are induced through the aggregation of Ge vacancies during annealing. Such enlarged grains can weaken carrier scattering, while vacancy clusters can strengthen phonon scattering, leading to decoupled carrier-phonon scattering. As a result, a ratio between carrier mobility and lattice thermal conductivity of ∼492.8 cm3 V–1 s–1 W–1 K and a peak ZT of ∼0.4 at 473 K are achieved in Ge0.67Pb0.13Bi0.2Te. This work reveals the critical roles of enlarged grains and induced vacancy clusters in decoupling carrier-phonon scattering and demonstrates the viability of fabricating high-performance n-type GeTe materials via annealing optimization.
中文翻译:
去耦载流子-声子散射可提高 n 型 GeTe 基材料的热电性能
载流子和声子散射之间的耦合关系严重限制了n型GeTe材料的热电性能。在这里,我们提供了一种有效的策略来扩大晶粒并诱导空位簇,通过 n 型 GeTe 基材料的退火优化来解耦载流子声子散射。具体来说,通过优化退火时间,利用边界迁移来扩大晶粒,同时通过退火过程中Ge空位的聚集来诱导空位簇。这种增大的晶粒会减弱载流子散射,而空位团簇会增强声子散射,导致载流子-声子散射解耦。结果,Ge 0.67 Pb 0.13 Bi 0.2 Te 中的载流子迁移率和晶格热导率之间的比率为~492.8 cm 3 V –1 s –1 W –1 K,峰值ZT在473 K处为~0.4。这项工作揭示了增大晶粒和诱导空位团簇在载流子声子散射去耦中的关键作用,并证明了通过退火优化制造高性能 n 型 GeTe 材料的可行性。
更新日期:2024-01-04
中文翻译:
去耦载流子-声子散射可提高 n 型 GeTe 基材料的热电性能
载流子和声子散射之间的耦合关系严重限制了n型GeTe材料的热电性能。在这里,我们提供了一种有效的策略来扩大晶粒并诱导空位簇,通过 n 型 GeTe 基材料的退火优化来解耦载流子声子散射。具体来说,通过优化退火时间,利用边界迁移来扩大晶粒,同时通过退火过程中Ge空位的聚集来诱导空位簇。这种增大的晶粒会减弱载流子散射,而空位团簇会增强声子散射,导致载流子-声子散射解耦。结果,Ge 0.67 Pb 0.13 Bi 0.2 Te 中的载流子迁移率和晶格热导率之间的比率为~492.8 cm 3 V –1 s –1 W –1 K,峰值ZT在473 K处为~0.4。这项工作揭示了增大晶粒和诱导空位团簇在载流子声子散射去耦中的关键作用,并证明了通过退火优化制造高性能 n 型 GeTe 材料的可行性。