自从安德森和布朗特的预测首次发现非磁性铁电类金属 LiOsO \(_3\)以来,金属中的铁电性取得了进展。然而,评估这种金属的自发电极化(SEP)一直受到实验和理论障碍的阻碍。实验挑战源于使用外部电场切换极化的困难,而理论限制在于现有方法仅适用于非金属。 Zabalo 和 Stengel(Phys Rev Lett 126:127601, 2021,https://doi.org/10.1103/PhysRevLett.126.127601)通过提出弯曲电作为 LiOsO \(_3\)中实际极化切换的替代方案来解决实验障碍,其中需要类似于 BaTiO \(_3\)的临界弯曲半径。在本研究中,我们重点通过修改密度泛函理论和现代极化理论中的贝里相和万尼尔函数方法来解决理论障碍。通过采用这些修改,我们计算了 LiOsO \(_3\)的 SEP,与 BaTiO \(_3\)的极化相当。我们使用各种方式验证我们的预测。这项研究证实了这种新型类铁电金属中铁电性和金属性的共存。此外,通过解决理论局限性并提供对偏振特性的新见解,我们的研究补充了实验挠曲电提议,并为进一步探索和操纵偏振特性开辟了途径。 所开发的方法结合了改进的贝里相和万尼尔函数技术,为研究和设计新型材料(包括生物和纳米铁电类金属)提供了有前景的机会。这项研究有助于金属铁电性的进步,并为这一令人兴奋的领域的未来研究奠定了基础。
"点击查看英文标题和摘要"
Nonzero spontaneous electric polarization in metals: novel predictive methods and applications
Ferroelectricity in metals has advanced since the initial discovery of nonmagnetic ferroelectric-like metal LiOsO\(_3\), anchored in the Anderson and Blount prediction. However, evaluating the spontaneous electric polarization (SEP) of this metal has been hindered by experimental and theoretical obstacles. The experimental challenge arises from difficulties in switching polarization using an external electric field, while the theoretical limitation lies in existing methods applicable only to nonmetals. Zabalo and Stengel (Phys Rev Lett 126:127601, 2021, https://doi.org/10.1103/PhysRevLett.126.127601) addressed the experimental obstacle by proposing flexoelectricity as an alternative for practical polarization switching in LiOsO\(_3\), which requires a critical bending radius similar to BaTiO\(_3\). In this study, we focus on resolving the theoretical obstacle by modifying the Berry phase and Wannier functions approaches within density functional theory plus modern theory of polarization. By employing these modifications, we calculate the SEP of LiOsO\(_3\), comparable to the polarization of BaTiO\(_3\). We validate our predictions using various ways. This study confirms the coexistence of ferroelectricity and metallicity in this new class of ferroelectric-like metals. Moreover, by addressing the theoretical limitation and providing new insights into polarization properties, our study complements the experimental flexoelectricity proposal and opens avenues for further exploration and manipulation of polarization characteristics. The developed approaches, incorporating modified Berry phase and Wannier function techniques, offer promising opportunities for studying and designing novel materials, including bio- and nano-ferroelectric-like metals. This study contributes to the advancement of ferroelectricity in metals and provides a foundation for future research in this exciting field.