当前位置:
X-MOL 学术
›
Small Methods
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Direct In- and Out-of-Plane Writing of Metals on Insulators by Electron-Beam-Enabled, Confined Electrodeposition with Submicrometer Feature Size
Small Methods ( IF 10.7 ) Pub Date : 2024-01-06 , DOI: 10.1002/smtd.202301247 Mirco Nydegger 1 , Zhu-Jun Wang 2, 3 , Marc Georg Willinger 2, 4 , Ralph Spolenak 1 , Alain Reiser 1, 5
Small Methods ( IF 10.7 ) Pub Date : 2024-01-06 , DOI: 10.1002/smtd.202301247 Mirco Nydegger 1 , Zhu-Jun Wang 2, 3 , Marc Georg Willinger 2, 4 , Ralph Spolenak 1 , Alain Reiser 1, 5
Affiliation
Additive microfabrication processes based on localized electroplating enable the one-step deposition of micro-scale metal structures with outstanding performance, e.g., high electrical conductivity and mechanical strength. They are therefore evaluated as an exciting and enabling addition to the existing repertoire of microfabrication technologies. Yet, electrochemical processes are generally restricted to conductive or semiconductive substrates, precluding their application in the manufacturing of functional electric devices where direct deposition onto insulators is often required. Here, the direct, localized electrodeposition of copper on a variety of insulating substrates, namely Al2O3, glass and flexible polyethylene, is demonstrated, enabled by electron-beam-induced reduction in a highly confined liquid electrolyte reservoir. The nanometer-size of the electrolyte reservoir, fed by electrohydrodynamic ejection, enables a minimal feature size on the order of 200 nm. The fact that the transient reservoir is established and stabilized by electrohydrodynamic ejection rather than specialized liquid cells can offer greater flexibility toward deposition on arbitrary substrate geometries and materials. Installed in a low-vacuum scanning electron microscope, the setup further allows for operando, nanoscale observation and analysis of the manufacturing process.
中文翻译:
通过亚微米特征尺寸的电子束受限电沉积在绝缘体上直接进行金属的面内和面外写入
基于局部电镀的增材微加工工艺能够一步沉积具有优异性能(例如高导电性和机械强度)的微型金属结构。因此,它们被评价为对现有微加工技术库的令人兴奋且有利的补充。然而,电化学工艺通常仅限于导电或半导体基材,妨碍了它们在通常需要直接沉积到绝缘体上的功能性电子器件的制造中的应用。在这里,通过电子束诱导还原在高度受限的液体电解质储存器中实现了铜在各种绝缘基板(即 Al 2 O 3 、玻璃和柔性聚乙烯)上的直接局部电沉积。纳米尺寸的电解质储存器由电流体动力喷射供给,可实现 200 nm 数量级的最小特征尺寸。事实上,瞬态储层是通过电流体动力喷射而不是专门的液体电池来建立和稳定的,可以为在任意基底几何形状和材料上的沉积提供更大的灵活性。该装置安装在低真空扫描电子显微镜中,可进一步对制造过程进行操作、纳米级观察和分析。
更新日期:2024-01-06
中文翻译:
通过亚微米特征尺寸的电子束受限电沉积在绝缘体上直接进行金属的面内和面外写入
基于局部电镀的增材微加工工艺能够一步沉积具有优异性能(例如高导电性和机械强度)的微型金属结构。因此,它们被评价为对现有微加工技术库的令人兴奋且有利的补充。然而,电化学工艺通常仅限于导电或半导体基材,妨碍了它们在通常需要直接沉积到绝缘体上的功能性电子器件的制造中的应用。在这里,通过电子束诱导还原在高度受限的液体电解质储存器中实现了铜在各种绝缘基板(即 Al 2 O 3 、玻璃和柔性聚乙烯)上的直接局部电沉积。纳米尺寸的电解质储存器由电流体动力喷射供给,可实现 200 nm 数量级的最小特征尺寸。事实上,瞬态储层是通过电流体动力喷射而不是专门的液体电池来建立和稳定的,可以为在任意基底几何形状和材料上的沉积提供更大的灵活性。该装置安装在低真空扫描电子显微镜中,可进一步对制造过程进行操作、纳米级观察和分析。