当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Digital Multiphase Composites via Additive Manufacturing
Advanced Materials ( IF 27.4 ) Pub Date : 2024-01-05 , DOI: 10.1002/adma.202308491 Lawrence T Smith 1 , Robert B MacCurdy 1
Advanced Materials ( IF 27.4 ) Pub Date : 2024-01-05 , DOI: 10.1002/adma.202308491 Lawrence T Smith 1 , Robert B MacCurdy 1
Affiliation
Mechanical properties of traditional engineering materials are typically coupled to each other, presenting a challenge to practitioners with multi-dimensional material property requirements. In this work, continuous, independent control over multiple mechanical properties is demonstrated in composite materials realized using additive manufacturing. For the first time, composites additively manufactured from rigid plastic, soft elastomer, and liquid constituents are experimentally characterized, demonstrating materials which span four orders of magnitude in modulus and two orders of magnitude in toughness. By forming analytical mappings between relative concentrations of constituents at the microscale and resulting macroscale material properties, inverse material design is enabled; the method is showcased by printing artifacts with prescribed toughness and elasticity distributions. The properties of these composites are placed in the context of biological tissues, showing they have promise as mechanically plausible tissue mimics.
中文翻译:
通过增材制造数字多相复合材料
传统工程材料的机械性能通常是相互耦合的,这对具有多维材料性能要求的从业者提出了挑战。在这项工作中,在使用增材制造实现的复合材料中演示了对多种机械性能的连续、独立控制。首次对由硬质塑料、软质弹性体和液体成分增材制造的复合材料进行了实验表征,证明材料的模量跨越四个数量级,韧性跨越两个数量级。通过在微观尺度上成分的相对浓度与由此产生的宏观材料特性之间形成分析映射,可以实现逆向材料设计;该方法通过打印具有指定韧性和弹性分布的工件来展示。这些复合材料的特性被置于生物组织的背景下,表明它们有望成为机械上合理的组织模拟物。
更新日期:2024-01-05
中文翻译:
通过增材制造数字多相复合材料
传统工程材料的机械性能通常是相互耦合的,这对具有多维材料性能要求的从业者提出了挑战。在这项工作中,在使用增材制造实现的复合材料中演示了对多种机械性能的连续、独立控制。首次对由硬质塑料、软质弹性体和液体成分增材制造的复合材料进行了实验表征,证明材料的模量跨越四个数量级,韧性跨越两个数量级。通过在微观尺度上成分的相对浓度与由此产生的宏观材料特性之间形成分析映射,可以实现逆向材料设计;该方法通过打印具有指定韧性和弹性分布的工件来展示。这些复合材料的特性被置于生物组织的背景下,表明它们有望成为机械上合理的组织模拟物。