Nature Communications ( IF 14.7 ) Pub Date : 2024-01-02 , DOI: 10.1038/s41467-023-43886-9 Xiaona Li 1, 2 , Jung Tae Kim 2 , Jing Luo 2 , Changtai Zhao 3 , Yang Xu 3, 4 , Tao Mei 4 , Ruying Li 2 , Jianwen Liang 2, 3 , Xueliang Sun 2
Metal halide solid-state electrolytes have gained widespread attention due to their high ionic conductivities, wide electrochemical stability windows, and good compatibility with oxide cathode materials. The exploration of highly ionic conductive halide electrolytes is actively ongoing. Thus, understanding the relationship between composition and crystal structure can be a critical guide for designing better halide electrolytes, which still remains obscure for reliable prediction. Here we show that the cationic polarization factor, which describes the geometric and ionic conditions, is effective in predicting the stacking structure of halide electrolytes formation. By supplementing this principle with rational design and preparation of more than 10 lithium halide electrolytes with high conductivity over 10−3 S cm−1 at 25 °C, we establish that there should be a variety of promising halide electrolytes that have yet to be discovered and developed. This methodology may enable the systematic screening of various potential halide electrolytes and demonstrate an approach to the design of halide electrolytes with superionic conductivity beyond the structure and stability predictions.
中文翻译:
全固态锂电池卤化物超离子导体的结构调控
金属卤化物固态电解质由于其高离子电导率、宽电化学稳定性窗口以及与氧化物正极材料良好的相容性而受到广泛关注。高离子导电卤化物电解质的探索正在积极进行中。因此,了解成分和晶体结构之间的关系可以成为设计更好的卤化物电解质的关键指南,但对于可靠的预测来说,这仍然是模糊的。在这里,我们表明,描述几何和离子条件的阳离子极化因子可有效预测卤化物电解质形成的堆叠结构。通过合理设计和制备 10 多种在 25 °C 时电导率超过 10 -3 S cm -1的卤化锂电解质来补充这一原理,我们确定应该有多种有前途的卤化物电解质尚未发现。并发展起来。该方法可以系统地筛选各种潜在的卤化物电解质,并展示一种设计具有超出结构和稳定性预测的超离子电导率的卤化物电解质的方法。