当前位置:
X-MOL 学术
›
IMA J. Numer. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Compactness estimates for difference schemes for conservation laws with discontinuous flux
IMA Journal of Numerical Analysis ( IF 2.3 ) Pub Date : 2024-01-04 , DOI: 10.1093/imanum/drad096 Kenneth H Karlsen 1 , John D Towers 2
IMA Journal of Numerical Analysis ( IF 2.3 ) Pub Date : 2024-01-04 , DOI: 10.1093/imanum/drad096 Kenneth H Karlsen 1 , John D Towers 2
Affiliation
We establish quantitative compactness estimates for finite difference schemes used to solve nonlinear conservation laws. These equations involve a flux function $f(k(x,t),u)$, where the coefficient $k(x,t)$ is $BV$-regular and may exhibit discontinuities along curves in the $(x,t)$ plane. Our approach, which is technically elementary, relies on a discrete interaction estimate and one entropy function. While the details are specifically outlined for the Lax-Friedrichs scheme, the same framework can be applied to other difference schemes. Notably, our compactness estimates are new even in the homogeneous case ($k\equiv 1$).
中文翻译:
具有不连续通量的守恒定律的差分方案的紧凑性估计
我们为用于求解非线性守恒定律的有限差分方案建立了定量紧缩估计。这些方程涉及一个磁通量函数 $f(k(x,t),u)$,其中系数 $k(x,t)$ 是 $BV$ 规则的,并且可能在 $(x,t)$ 平面上沿曲线表现出不连续性。我们的方法在技术上是基本的,依赖于离散交互估计和一个熵函数。虽然 Lax-Friedrichs 方案专门概述了细节,但相同的框架可以应用于其他差异方案。值得注意的是,即使在齐次情况下 ($k\equiv 1$),我们的紧凑性估计也是新的。
更新日期:2024-01-04
中文翻译:
具有不连续通量的守恒定律的差分方案的紧凑性估计
我们为用于求解非线性守恒定律的有限差分方案建立了定量紧缩估计。这些方程涉及一个磁通量函数 $f(k(x,t),u)$,其中系数 $k(x,t)$ 是 $BV$ 规则的,并且可能在 $(x,t)$ 平面上沿曲线表现出不连续性。我们的方法在技术上是基本的,依赖于离散交互估计和一个熵函数。虽然 Lax-Friedrichs 方案专门概述了细节,但相同的框架可以应用于其他差异方案。值得注意的是,即使在齐次情况下 ($k\equiv 1$),我们的紧凑性估计也是新的。