当前位置:
X-MOL 学术
›
Sci. Total Environ.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Degradation of enoxacin with different dissociated species during the transformation of ferrihydrite-antibiotic coprecipitates
Science of the Total Environment ( IF 8.2 ) Pub Date : 2024-01-04 , DOI: 10.1016/j.scitotenv.2023.169797
Zhiyong Guo 1 , Liting Wang 2 , Baogen Feng 3 , Liwen Zhang 1 , Wenming Zhang 4 , Deming Dong 1
Science of the Total Environment ( IF 8.2 ) Pub Date : 2024-01-04 , DOI: 10.1016/j.scitotenv.2023.169797
Zhiyong Guo 1 , Liting Wang 2 , Baogen Feng 3 , Liwen Zhang 1 , Wenming Zhang 4 , Deming Dong 1
Affiliation
![]() |
Ferrihydrite acts as a natural reservoir for nutrient elements, organic matter, and coexisting pollutants through adsorption and coprecipitation. However, the degradation of emerging fluoroquinolone antibiotics during the transformation of ferrihydrite coprecipitates, especially those with various dissociated species, remains insufficiently explored. In this study, Enoxacin (ENO), employed as a model antibiotic, was introduced to prepare ferrihydrite-ENO coprecipitates. The influence of coprecipitated ENO on the transformation of the ferrihydrite-ENO coprecipitate was investigated across different pH conditions. The results revealed that ferrihydrite-ENO coprecipitates thermodynamically transformed into more stable goethite and/or hematite under all pH conditions. In neutral and alkaline conditions, ENO promoted the transformation of coprecipitates into goethite while hindering hematite formation. Conversely, under acidic conditions, ENO directly obstructed the transformation of coprecipitates into hematite. Different dissociated species of ENO displayed distinct degradation pathways. The cationic form of ENO exhibited a greater tendency for hydroxylation and defluorination, while the zwitterion form leaned toward piperazine ring oxidation, with limited preference for quinolone ring oxidation. The anionic form of ENO exhibited the fastest degradation rate. It is essential to emphasize that the toxicity of the degradation products was intricately connected to the specific reaction sites and the functional groups they acquired post-oxidation. These findings offer fresh insights into the role of antibiotics in coprecipitation, the transformation of ferrihydrite coprecipitates, and the fate of coexisting antibiotics.
中文翻译:
依诺沙星与不同解离物种在水合铁矿-抗生素共沉淀物转化过程中的降解
水铁矿通过吸附和共沉淀充当营养元素、有机物和共存污染物的天然储存库。然而,在水铁酸盐共沉淀物转化过程中新兴的氟喹诺酮类抗生素的降解,尤其是那些具有各种解离物种的抗生素,仍未得到充分探索。在这项研究中,引入依诺沙星 (ENO) 作为模型抗生素来制备水铁酸盐-ENO 共沉淀物。研究了共沉淀的 ENO 对水铁矿-ENO 共沉淀物转化的影响,研究了不同 pH 条件下的共沉淀物。结果表明,在所有 pH 条件下,水铁矿-ENO 共沉淀物热力学上转化为更稳定的针铁矿和/或赤铁矿。在中性和碱性条件下,ENO 促进共聚物向针铁矿的转变,同时阻碍赤铁矿的形成。相反,在酸性条件下,ENO 直接阻碍了共沉淀物向赤铁矿的转化。不同的解离物种 ENO 表现出不同的降解途径。ENO 的阳离子形式表现出更大的羟基化和脱氟倾向,而两性离子形式倾向于哌嗪环氧化,对喹诺酮环氧化的偏好有限。ENO 的阴离子形式表现出最快的降解速率。必须强调的是,降解产物的毒性与特定反应位点和它们在氧化后获得的官能团有着错综复杂的联系。这些发现为抗生素在共沉淀中的作用、水铁酸盐共沉淀物的转化以及共存抗生素的命运提供了新的见解。
更新日期:2024-01-04
中文翻译:

依诺沙星与不同解离物种在水合铁矿-抗生素共沉淀物转化过程中的降解
水铁矿通过吸附和共沉淀充当营养元素、有机物和共存污染物的天然储存库。然而,在水铁酸盐共沉淀物转化过程中新兴的氟喹诺酮类抗生素的降解,尤其是那些具有各种解离物种的抗生素,仍未得到充分探索。在这项研究中,引入依诺沙星 (ENO) 作为模型抗生素来制备水铁酸盐-ENO 共沉淀物。研究了共沉淀的 ENO 对水铁矿-ENO 共沉淀物转化的影响,研究了不同 pH 条件下的共沉淀物。结果表明,在所有 pH 条件下,水铁矿-ENO 共沉淀物热力学上转化为更稳定的针铁矿和/或赤铁矿。在中性和碱性条件下,ENO 促进共聚物向针铁矿的转变,同时阻碍赤铁矿的形成。相反,在酸性条件下,ENO 直接阻碍了共沉淀物向赤铁矿的转化。不同的解离物种 ENO 表现出不同的降解途径。ENO 的阳离子形式表现出更大的羟基化和脱氟倾向,而两性离子形式倾向于哌嗪环氧化,对喹诺酮环氧化的偏好有限。ENO 的阴离子形式表现出最快的降解速率。必须强调的是,降解产物的毒性与特定反应位点和它们在氧化后获得的官能团有着错综复杂的联系。这些发现为抗生素在共沉淀中的作用、水铁酸盐共沉淀物的转化以及共存抗生素的命运提供了新的见解。