当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thin-Film Composite Membranes for Hydrogen Evolution with a Saline Catholyte Water Feed
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2024-01-03 , DOI: 10.1021/acs.est.3c07957
Le Shi 1, 2 , Xuechen Zhou 1 , Rachel F Taylor 3 , Chenghan Xie 1 , Bin Bian 1 , Derek M Hall 4 , Ruggero Rossi 1, 5 , Michael A Hickner 6 , Christopher A Gorski 1 , Bruce E Logan 1, 3
Affiliation  

Hydrogen gas evolution using an impure or saline water feed is a promising strategy to reduce overall energy consumption and investment costs for on-site, large-scale production using renewable energy sources. The chlorine evolution reaction is one of the biggest concerns in hydrogen evolution with impure water feeds. The “alkaline design criterion” in impure water electrolysis was examined here because water oxidation catalysts can exhibit a larger kinetic overpotential without interfering chlorine chemistry under alkaline conditions. Here, we demonstrated that relatively inexpensive thin-film composite (TFC) membranes, currently used for high-pressure reverse osmosis (RO) desalination applications, can have much higher rejection of Cl (total crossover of 2.9 ± 0.9 mmol) than an anion-exchange membrane (AEM) (51.8 ± 2.3 mmol) with electrolytes of 0.5 M KOH for the anolyte and 0.5 M NaCl for the catholyte with a constant current (100 mA/cm2 for 20 h). The membrane resistances, which were similar for the TFC membrane and the AEM based on electrochemical impedance spectroscopy (EIS) and Ohm’s law methods, could be further reduced by increasing the electrolyte concentration or removal of the structural polyester supporting layer (TFC-no PET). TFC membranes could enable pressurized gas production, as this membrane was demonstrated to be mechanically stable with no change in permeate flux at 35 bar. These results show that TFC membranes provide a novel pathway for producing green hydrogen with a saline water feed at elevated pressures compared to systems using AEMs or porous diaphragms.

中文翻译:


用于用盐水阴极电解液进水析氢的薄膜复合膜



使用不纯水或盐水进料进行氢气析出是一种很有前途的策略,可以减少使用可再生能源进行现场大规模生产的总体能源消耗和投资成本。氯析出反应是不纯水析出氢中最令人担忧的问题之一。这里检查了不纯水电解中的“碱性设计标准”,因为水氧化催化剂可以在碱性条件下表现出更大的动力学过电势而不干扰氯化学。在这里,我们证明了目前用于高压反渗透 (RO) 海水淡化应用的相对便宜的薄膜复合 (TFC) 膜对 Cl 的截留率(总交叉量为 2.9 ± 0.9 mmol)比阴离子具有更高的截留率-交换膜(AEM)(51.8 ± 2.3 mmol),阳极电解液为 0.5 M KOH,阴极电解液为 0.5 M NaCl,恒定电流(100 mA/cm 2持续 20 小时)。基于电化学阻抗谱 (EIS) 和欧姆定律方法,TFC 膜和 AEM 的膜电阻相似,可以通过增加电解质浓度或去除结构聚酯支撑层(TFC-no PET)进一步降低膜电阻。 TFC 膜可以实现加压气体生产,因为该膜被证明具有机械稳定性,在 35 bar 的压力下渗透通量没有变化。这些结果表明,与使用 AEM 或多孔隔膜的系统相比,TFC 膜提供了一种在高压下用盐水进料生产绿色氢气的新途径。
更新日期:2024-01-03
down
wechat
bug