当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Controlling Dielectric Film Defects to Increase the Breakdown Voltage of Conductive Polymer Solid Capacitors
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-01-01 , DOI: 10.1021/acsami.3c14078 David Quintero 1 , Hisato Matsuya 2 , Mana Iwai 1 , Sho Kitano 1 , Koji Fushimi 1 , Hiroki Habazaki 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-01-01 , DOI: 10.1021/acsami.3c14078 David Quintero 1 , Hisato Matsuya 2 , Mana Iwai 1 , Sho Kitano 1 , Koji Fushimi 1 , Hiroki Habazaki 1
Affiliation
Aluminum solid polymer capacitors are promising devices for the increased demand for power electronics applications. Nonetheless, the low breakdown voltage of commercially available catalysts (∼100 V) limits their applications. In this study, a hydroxide-film-covered high-purity aluminum was anodized at 700 V in boric acid at 85 °C, and the effect of a second hot water immersion (posthydration treatment) after anodizing on the breakdown voltage was studied as a possible future treatment to enhance the withstand voltages of solid electrolytic capacitors. The dielectric breakdown voltage of the anodized aluminum with a PEDOT:PSS coating was ∼500 V, being ∼200 V less than the anodizing voltage; however, the dielectric breakdown voltage was increased above 700 V by introducing the posthydration treatment due to the formation of a nanovoid layer above the dielectric alumina film. Our research suggests that the highly dispersed nanovoids incorporated with PEDOT:PSS avoid the current concentration at some local regions, effectively increasing the dielectric breakdown voltage. The posthydration treatment increased the leakage current by introducing physical defects in the dielectric film. However, the leakage current was reduced by a voltage sweep below the breakdown voltage after the PEDOT:PSS coating or a second anodizing process before the coating, keeping the breakdown voltage above 600 V. A promising processing route to obtain aluminum solid capacitors with high withstand voltage (600 V) found in our research is, first, dipping in hot water; second, anodizing at 700 V; then a second hot water treatment; and a second anodizing at 400 V, which keeps the capacitance invariable with a breakdown voltage enhanced.
中文翻译:
控制介质膜缺陷以提高导电聚合物固体电容器的击穿电压
铝固体聚合物电容器是满足日益增长的电力电子应用需求的有前景的器件。尽管如此,商用催化剂的低击穿电压(~100 V)限制了它们的应用。在这项研究中,将覆盖有氢氧化物膜的高纯铝在85℃的硼酸中进行700V的阳极氧化,并研究了阳极氧化后的第二次热水浸泡(后水化处理)对击穿电压的影响。未来可能进行处理以提高固体电解电容器的耐受电压。具有 PEDOT:PSS 涂层的阳极氧化铝的介电击穿电压为 ∼500 V,比阳极氧化电压低 ∼200 V;然而,通过引入后水合处理,由于在介电氧化铝膜上方形成纳米空隙层,介电击穿电压提高到700V以上。我们的研究表明,与PEDOT:PSS结合的高度分散的纳米空隙避免了某些局部区域的电流集中,有效地提高了介电击穿电压。水合后处理通过在介电膜中引入物理缺陷而增加了漏电流。然而,通过PEDOT:PSS涂层后的电压扫描低于击穿电压或涂层前的第二次阳极氧化工艺,可以降低漏电流,使击穿电压保持在600 V以上。这是一种获得高耐压铝固态电容器的有前途的加工路线我们研究发现电压(600V)首先是浸入热水中;第二,700V阳极氧化;然后进行第二次热水处理;在400V下进行第二次阳极氧化,保持电容不变,击穿电压增强。
更新日期:2024-01-01
中文翻译:
控制介质膜缺陷以提高导电聚合物固体电容器的击穿电压
铝固体聚合物电容器是满足日益增长的电力电子应用需求的有前景的器件。尽管如此,商用催化剂的低击穿电压(~100 V)限制了它们的应用。在这项研究中,将覆盖有氢氧化物膜的高纯铝在85℃的硼酸中进行700V的阳极氧化,并研究了阳极氧化后的第二次热水浸泡(后水化处理)对击穿电压的影响。未来可能进行处理以提高固体电解电容器的耐受电压。具有 PEDOT:PSS 涂层的阳极氧化铝的介电击穿电压为 ∼500 V,比阳极氧化电压低 ∼200 V;然而,通过引入后水合处理,由于在介电氧化铝膜上方形成纳米空隙层,介电击穿电压提高到700V以上。我们的研究表明,与PEDOT:PSS结合的高度分散的纳米空隙避免了某些局部区域的电流集中,有效地提高了介电击穿电压。水合后处理通过在介电膜中引入物理缺陷而增加了漏电流。然而,通过PEDOT:PSS涂层后的电压扫描低于击穿电压或涂层前的第二次阳极氧化工艺,可以降低漏电流,使击穿电压保持在600 V以上。这是一种获得高耐压铝固态电容器的有前途的加工路线我们研究发现电压(600V)首先是浸入热水中;第二,700V阳极氧化;然后进行第二次热水处理;在400V下进行第二次阳极氧化,保持电容不变,击穿电压增强。