当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhancing Efficiency and Intrinsic Stability of Large-Area Blade-Coated Wide-Bandgap Perovskite Solar Cells Through Strain Release
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-01-02 , DOI: 10.1002/adfm.202314349 Dexin Pu 1 , Shun Zhou 1 , Hongling Guan 1 , Peng Jia 1 , Guoyi Chen 1 , Hongyi Fang 1 , Shiqiang Fu 1 , Chen Wang 1 , Hakim Hushvaktov 2 , Abduvakhid Jumabaev 2 , Weiwei Meng 3 , Xingzhu Wang 4, 5 , Guojia Fang 1 , Weijun Ke 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-01-02 , DOI: 10.1002/adfm.202314349 Dexin Pu 1 , Shun Zhou 1 , Hongling Guan 1 , Peng Jia 1 , Guoyi Chen 1 , Hongyi Fang 1 , Shiqiang Fu 1 , Chen Wang 1 , Hakim Hushvaktov 2 , Abduvakhid Jumabaev 2 , Weiwei Meng 3 , Xingzhu Wang 4, 5 , Guojia Fang 1 , Weijun Ke 1
Affiliation
The realization of efficient large-area perovskite solar cells stands as a pivotal milestone for propelling their future commercial viability. However, the upscaling fabrication of perovskite solar cells is hampered by efficiency losses, and the underlying growth mechanism remains enigmatic. Here, it is unveiled that a prevalent upscaling technology, namely blade-coating, inherently triggers top-down inhomogeneity strains, predominantly concentrated on the surface of wide-bandgap perovskite films. Through strain mitigation strategies, the perovskite films exhibit reduced halide vacancies, leading to enhanced stability and improved optoelectronic characteristics. Consequently, the blade-coated perovskite solar cells achieve minimal efficiency loss when transitioning from small-area to large-area devices, enabling the realization of 1 cm2-area 1.77 eV-bandgap cells with a remarkable efficiency of 18.71%. Additionally, the strain-relieved device exhibits an exceptional 109% retention of its initial efficiency even after 400 h of continuous operation, in stark contrast to the control device which experiences a decline to 91%. Furthermore, the resulting 4-terminal all-perovskite tandem solar cells crafted utilizing blade-coated 1.77 eV-bandgap subcells achieve a maximum efficiency of 27.64% (stabilized at 27.28%). This study not only sheds light on the intricacies of upscaling preparation techniques but also overcomes potential obstacles that can impede the trajectory toward achieving large-scale perovskite solar cells.
中文翻译:
通过应变释放提高大面积刀片涂覆宽带隙钙钛矿太阳能电池的效率和本质稳定性
高效大面积钙钛矿太阳能电池的实现是推动其未来商业可行性的关键里程碑。然而,钙钛矿太阳能电池的大规模制造受到效率损失的阻碍,并且潜在的生长机制仍然是个谜。在这里,我们发现一种流行的放大技术,即刀片涂层,本质上会引发自上而下的不均匀应变,主要集中在宽带隙钙钛矿薄膜的表面。通过应变缓解策略,钙钛矿薄膜表现出减少的卤化物空位,从而提高稳定性并改善光电特性。因此,刀片涂层钙钛矿太阳能电池在从小面积器件过渡到大面积器件时实现了最小的效率损失,从而实现了1 cm 2面积1.77 eV带隙电池,效率高达18.71%。此外,即使在连续运行 400 小时后,应变消除装置仍能保持 109% 的初始效率,与下降至 91% 的控制装置形成鲜明对比。此外,利用刀片涂层1.77 eV带隙子电池制作的4端子全钙钛矿串联太阳能电池的最大效率达到27.64%(稳定在27.28%)。这项研究不仅揭示了放大制备技术的复杂性,而且克服了可能阻碍实现大规模钙钛矿太阳能电池的潜在障碍。
更新日期:2024-01-02
中文翻译:
通过应变释放提高大面积刀片涂覆宽带隙钙钛矿太阳能电池的效率和本质稳定性
高效大面积钙钛矿太阳能电池的实现是推动其未来商业可行性的关键里程碑。然而,钙钛矿太阳能电池的大规模制造受到效率损失的阻碍,并且潜在的生长机制仍然是个谜。在这里,我们发现一种流行的放大技术,即刀片涂层,本质上会引发自上而下的不均匀应变,主要集中在宽带隙钙钛矿薄膜的表面。通过应变缓解策略,钙钛矿薄膜表现出减少的卤化物空位,从而提高稳定性并改善光电特性。因此,刀片涂层钙钛矿太阳能电池在从小面积器件过渡到大面积器件时实现了最小的效率损失,从而实现了1 cm 2面积1.77 eV带隙电池,效率高达18.71%。此外,即使在连续运行 400 小时后,应变消除装置仍能保持 109% 的初始效率,与下降至 91% 的控制装置形成鲜明对比。此外,利用刀片涂层1.77 eV带隙子电池制作的4端子全钙钛矿串联太阳能电池的最大效率达到27.64%(稳定在27.28%)。这项研究不仅揭示了放大制备技术的复杂性,而且克服了可能阻碍实现大规模钙钛矿太阳能电池的潜在障碍。