当前位置:
X-MOL 学术
›
Acta Cryst. D
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Deep residual networks for crystallography trained on synthetic data
Acta Crystallographica Section D ( IF 2.6 ) Pub Date : 2024-01-01 , DOI: 10.1107/s2059798323010586 Derek Mendez 1 , James M Holton 1 , Artem Y Lyubimov 1 , Sabine Hollatz 1 , Irimpan I Mathews 1 , Aleksander Cichosz 2 , Vardan Martirosyan 3 , Teo Zeng 2 , Ryan Stofer 2 , Ruobin Liu 2 , Jinhu Song 1 , Scott McPhillips 1 , Mike Soltis 1 , Aina E Cohen 1
中文翻译:
基于合成数据训练的晶体学深度残差网络
更新日期:2024-01-01
Acta Crystallographica Section D ( IF 2.6 ) Pub Date : 2024-01-01 , DOI: 10.1107/s2059798323010586 Derek Mendez 1 , James M Holton 1 , Artem Y Lyubimov 1 , Sabine Hollatz 1 , Irimpan I Mathews 1 , Aleksander Cichosz 2 , Vardan Martirosyan 3 , Teo Zeng 2 , Ryan Stofer 2 , Ruobin Liu 2 , Jinhu Song 1 , Scott McPhillips 1 , Mike Soltis 1 , Aina E Cohen 1
Affiliation
中文翻译:
基于合成数据训练的晶体学深度残差网络