当前位置: X-MOL 学术Microsyst. Nanoeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Aerosol jet printing of surface acoustic wave microfluidic devices
Microsystems & Nanoengineering ( IF 7.3 ) Pub Date : 2024-01-01 , DOI: 10.1038/s41378-023-00606-z
Joseph Rich 1 , Brian Cole 2 , Teng Li 3 , Brandon Lu 1 , Hanyu Fu 1 , Brittany N Smith 2 , Jianping Xia 4 , Shujie Yang 4 , Ruoyu Zhong 4 , James L Doherty 2 , Kanji Kaneko 5 , Hiroaki Suzuki 5 , Zhenhua Tian 3 , Aaron D Franklin 2, 6 , Tony Jun Huang 4
Affiliation  

The addition of surface acoustic wave (SAW) technologies to microfluidics has greatly advanced lab-on-a-chip applications due to their unique and powerful attributes, including high-precision manipulation, versatility, integrability, biocompatibility, contactless nature, and rapid actuation. However, the development of SAW microfluidic devices is limited by complex and time-consuming micro/nanofabrication techniques and access to cleanroom facilities for multistep photolithography and vacuum-based processing. To simplify the fabrication of SAW microfluidic devices with customizable dimensions and functions, we utilized the additive manufacturing technique of aerosol jet printing. We successfully fabricated customized SAW microfluidic devices of varying materials, including silver nanowires, graphene, and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). To characterize and compare the acoustic actuation performance of these aerosol jet printed SAW microfluidic devices with their cleanroom-fabricated counterparts, the wave displacements and resonant frequencies of the different fabricated devices were directly measured through scanning laser Doppler vibrometry. Finally, to exhibit the capability of the aerosol jet printed devices for lab-on-a-chip applications, we successfully conducted acoustic streaming and particle concentration experiments. Overall, we demonstrated a novel solution-based, direct-write, single-step, cleanroom-free additive manufacturing technique to rapidly develop SAW microfluidic devices that shows viability for applications in the fields of biology, chemistry, engineering, and medicine.



中文翻译:


表面声波微流控装置的气溶胶喷射打印



将表面声波 (SAW) 技术添加到微流体中,由于其独特而强大的属性,包括高精度操作、多功能性、可集成性、生物相容性、非接触性和快速驱动,极大地推进了芯片实验室应用。然而,SAW微流体装置的发展受到复杂且耗时的微/纳米制造技术以及用于多步光刻和真空处理的洁净室设施的限制。为了简化具有可定制尺寸和功能的 SAW 微流控器件的制造,我们利用了气溶胶喷射打印的增材制造技术。我们成功地制造了不同材料的定制SAW微流体装置,包括银纳米线、石墨烯和聚(3,4-乙撑二氧噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)。为了表征和比较这些气溶胶喷射印刷的 SAW 微流体装置与洁净室制造的对应物的声驱动性能,通过扫描激光多普勒测振法​​直接测量不同制造装置的波位移和谐振频率。最后,为了展示气溶胶喷射打印设备在芯片实验室应用中的能力,我们成功地进行了声流和颗粒浓度实验。总体而言,我们展示了一种新颖的基于解决方案的、直写、单步、无洁净室的增材制造技术,用于快速开发 SAW 微流体设备,该设备显示出在生物、化学、工程和医学领域应用的可行性。

更新日期:2024-01-01
down
wechat
bug