当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ion-Molecule Co-Confining Ammonium Vanadate Cathode for High-Performance Aqueous Zinc-Ion Batteries
Small ( IF 13.0 ) Pub Date : 2023-12-28 , DOI: 10.1002/smll.202311029
Yu Qiu 1 , Zhihao Sun 1 , Zihao Guo 1 , Benli Du 1 , Han Ding 1 , Peng Wang 1 , Shaoyao Tian 1 , Lei Qian 1
Affiliation  

Vanadium-based cathode materials have attracted great attention in aqueous zinc-ion batteries (AZIBs). However, the inferior ion transport and cyclic stability due to the strong Coulomb interaction between Zn2+ and the lattice limit their further application. In this work, CO2 molecules are in situ embedded in the interlayer structure of NH4V4O10 by decomposing excess H2C2O4·2H2O in the main framework, obtaining an ion-molecule co-confining NH4V4O10 for AZIB cathode material. The introduced CO2 molecules expanded the interlayer spacing of NH4V4O10, broadened the diffusion channel of Zn2+, and stabilized the structure of NH4V4O10 as the interlayer pillars together with , which effectively improved the Zn2+ diffusion kinetics and cycle stability of the electrode. In addition, the binding between and the host framework is stabilized via hydrogen bonds with CO2 molecules. NVO-CO2-0.8 exhibited excellent specific capacity (451.1 mAh g−1 at 2 A g−1), cycle stability (214.0 mAh g−1 at 10 A g−1 after 1000 cycles) and rate performance. This work provides new ideas and approaches for optimizing vanadium-based materials with high-performance AZIBs.

中文翻译:


用于高性能水系锌离子电池的离子分子共约束钒酸铵正极



钒基正极材料在水系锌离子电池(AZIB)中引起了极大的关注。然而,由于Zn 2+与晶格之间的强库仑相互作用,其离子传输和循环稳定性较差,限制了其进一步应用。该工作通过分解主骨架中多余的H 2 C 2 O 4 ·2H 2 O,将CO 2分子原位嵌入NH 4 V 4 O 10的层间结构中,得到离子-分子共约束NH 4 V 4 O 10为AZIB正极材料。引入的CO 2分子扩大了NH 4 V 4 O 10的层间距,加宽了Zn 2+的扩散通道,并稳定了NH 4 V 4 O 10作为层间支柱的结构。 ,有效提高了电极的Zn 2+扩散动力学和循环稳定性。此外,之间的绑定主体框架通过与CO 2分子的氢键稳定。 NVO-CO 2 -0.8 表现出优异的比容量(2 A g -1下451.1 mAh g -1 )、循环稳定性(1000次循环后10 A g -1下214.0 mAh g -1 )和倍率性能。 这项工作为优化高性能 AZIB 钒基材料提供了新的思路和方法。
更新日期:2023-12-28
down
wechat
bug