当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interface Welding via Thermal Pulse Sintering to Enable 4.6 V Solid-State Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-12-27 , DOI: 10.1002/aenm.202303422 Xiangming Yao 1 , Shiming Chen 1 , Changhong Wang 2 , Taowen Chen 1 , Jiangxiao Li 3 , Shida Xue 1 , Zhikang Deng 1 , Wenguang Zhao 1 , Bowen Nan 1 , Yiqian Zhao 1 , Kai Yang 4 , Yongli Song 5 , Feng Pan 1 , Luyi Yang 1 , Xueliang Sun 2, 6
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-12-27 , DOI: 10.1002/aenm.202303422 Xiangming Yao 1 , Shiming Chen 1 , Changhong Wang 2 , Taowen Chen 1 , Jiangxiao Li 3 , Shida Xue 1 , Zhikang Deng 1 , Wenguang Zhao 1 , Bowen Nan 1 , Yiqian Zhao 1 , Kai Yang 4 , Yongli Song 5 , Feng Pan 1 , Luyi Yang 1 , Xueliang Sun 2, 6
Affiliation
NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP) is one of the most promising solid-state electrolytes (SSEs) to achieve high-energy-density solid-state batteries (SSBs) due to its high ionic conductivity, high-voltage stability, and low cost. However, its practical application is constrained by inadequate interfacial compatibility with cathode materials and significant incompatibility with lithium metal. In this work, a cost-effective interface welding approach is reported, utilizing an innovative thermal pulse sintering (TPS) to fabricate LATP-based solid-state batteries. Initially, the rapid thermal pulses enhance the ionic conductivity of LATP SSE by inducing selective growth of LATP nanowires, effectively occupying interparticle voids. Additionally, this process results in the formation of a dense layer (GCM) comprising graphene oxide, carbon nanotubes, and MXene with a controlled Li+ transport pathway, facilitating lithium stripping and plating processes. Moreover, these thermal pulses facilitate the interfacial fusion between LATP and cathode materials, while avoiding undesired phase diffusion. As a result, SSBs with a LiCoO2 cathode deliver favorable cycle stability at 4.6 V, marking significant progress. This facile interface welding strategy represents a substantial step toward high-energy-density SSB development.
中文翻译:
通过热脉冲烧结进行界面焊接以实现 4.6 V 固态电池
NASICON型Li 1.3 Al 0.3 Ti 1.7 (PO4) 3 (LATP)由于其高离子电导率,是最有希望实现高能量密度固态电池(SSB)的固态电解质(SSE)之一,电压稳定性高,成本低。然而,其实际应用受到与正极材料的界面相容性不足以及与锂金属的显着不相容性的限制。在这项工作中,报告了一种经济有效的界面焊接方法,利用创新的热脉冲烧结(TPS)来制造基于 LATP 的固态电池。最初,快速热脉冲通过诱导 LATP 纳米线的选择性生长来增强 LATP SSE 的离子电导率,有效地占据颗粒间空隙。此外,该过程会形成由氧化石墨烯、碳纳米管和 MXene 组成的致密层 (GCM),并具有受控的 Li +传输路径,从而促进锂剥离和电镀过程。此外,这些热脉冲促进 LATP 和阴极材料之间的界面融合,同时避免不需要的相扩散。因此,具有 LiCoO 2阴极的 SSB 在 4.6 V 下具有良好的循环稳定性,标志着重大进展。这种简便的界面焊接策略代表了高能量密度 SSB 开发的实质性一步。
更新日期:2023-12-27
中文翻译:
通过热脉冲烧结进行界面焊接以实现 4.6 V 固态电池
NASICON型Li 1.3 Al 0.3 Ti 1.7 (PO4) 3 (LATP)由于其高离子电导率,是最有希望实现高能量密度固态电池(SSB)的固态电解质(SSE)之一,电压稳定性高,成本低。然而,其实际应用受到与正极材料的界面相容性不足以及与锂金属的显着不相容性的限制。在这项工作中,报告了一种经济有效的界面焊接方法,利用创新的热脉冲烧结(TPS)来制造基于 LATP 的固态电池。最初,快速热脉冲通过诱导 LATP 纳米线的选择性生长来增强 LATP SSE 的离子电导率,有效地占据颗粒间空隙。此外,该过程会形成由氧化石墨烯、碳纳米管和 MXene 组成的致密层 (GCM),并具有受控的 Li +传输路径,从而促进锂剥离和电镀过程。此外,这些热脉冲促进 LATP 和阴极材料之间的界面融合,同时避免不需要的相扩散。因此,具有 LiCoO 2阴极的 SSB 在 4.6 V 下具有良好的循环稳定性,标志着重大进展。这种简便的界面焊接策略代表了高能量密度 SSB 开发的实质性一步。