Supply Chain Management ( IF 7.9 ) Pub Date : 2024-01-01 , DOI: 10.1108/scm-06-2023-0297 R. Anthony Inman , Kenneth W. Green , Matthew D. Roberts
Purpose
The purpose is to replicate and extend Ambulkar et al.’s (2015) work testing resource reconfiguration as a mediator of the supply chain disruption/firm resilience relationship and testing risk management infrastructure as a moderator. This study extends the work of Ambulkar in that it uses analysis of survey data gathered from manufacturing firms during an actual disruption event (COVID-19). The previous work is also in extended in that the authors include a pandemic disruption impact variable and supply chain performance is an expanded model.
Design/methodology/approach
Partial least squares structural equation modeling techniques were used to analyze data gathered from 184 US manufacturing managers during the height (Summer 2021) of the COVID-19 pandemic.
Findings
Two of four of Ambulkars et al.’s (2015) hypotheses were confirmed as relevant to firm resilience during the pandemic while two were not confirmed. Results also show that supply chain disruption orientation, risk management infrastructure and resource reconfiguration combine to improve firm resilience, which in turn improves supply chain performance while mitigating the disruption impact of COVID-19.
Originality/value
Previous work is replicated and extended, using data from an actual disruption event (COVID-19). This study presents a more comprehensive model using a newly developed and validated scale to measure pandemic impact and including supply chain performance.
中文翻译:
新冠疫情的复制和企业对供应链中断的恢复能力的扩展
目的
目的是复制和扩展 Ambulkar等人的研究。的(2015)工作测试资源重新配置作为供应链中断/公司弹性关系的调解者,并作为调解者测试风险管理基础设施。这项研究扩展了 Ambulkar 的工作,因为它使用了在实际中断事件 (COVID-19) 期间从制造公司收集的调查数据进行分析。之前的工作也得到了扩展,因为作者包括了流行病破坏影响变量,供应链绩效是一个扩展模型。
设计/方法论/途径
使用偏最小二乘结构方程建模技术分析了在 COVID-19 大流行高峰期(2021 年夏季)从 184 名美国制造经理收集的数据。
发现
Ambulkars 等人的四个人中的两个。(2015) 的假设被证实与大流行期间的公司弹性相关,但有两个假设尚未得到证实。结果还表明,供应链中断导向、风险管理基础设施和资源重新配置相结合,可以提高公司的弹性,从而提高供应链绩效,同时减轻 COVID-19 的中断影响。
原创性/价值
使用实际中断事件 (COVID-19) 的数据复制和扩展了之前的工作。这项研究提出了一个更全面的模型,使用新开发和验证的量表来衡量流行病的影响,包括供应链绩效。