已开发出荧光抗体微阵列,用于测定相关心血管疾病生物标志物,以分析人血浆样本。记录特征蛋白质分子指纹来评估个体的健康状况可以使诊断超越疾病的简单识别,提供有关其阶段或预后的信息。准确地说,心血管疾病(CVD)是一种复杂的疾病,涉及不同的退行性过程,其中包括与疾病进展或阶段相关的生物标志物的集合。我们提出的新方法是开发了一种荧光微阵列芯片,可同时测定血浆中最重要的心脏生物标志物,旨在确定患者的 CVD 状态阶段。作为概念验证,我们选择了五个相关的生物标志物,C反应蛋白(CRP)作为炎症生物标志物,胱抑素C(CysC)作为与心力衰竭直接相关的肾衰竭生物标志物,心肌肌钙蛋白I(cTnI)已经建立了心脏损伤的生物标志物,心脏脂肪酸结合蛋白作为缺血的生物标志物(H-FABP),最后建立了 NT-proBNP(N 端脑利钠肽前体),这是一种成熟的心力衰竭生物标志物。优化多重微阵列后,该测定可以同时测定缓冲溶液中的 5 种生物标志物,LOD 达到 15 ± 5、3 ± 1、24 ± 3、25 ± 3 和 3 ± 1 ng mL -1 ,分别为 CRP、CysC、H-FABP、cTnI 和 NT-proBNP。在解决了基质效应并证明了每种生物标志物的准确性后,该芯片能够确定每个微阵列芯片的 24 个样本。 然后,该微阵列被用于一项小型试点临床研究,该研究使用了来自患有不同 CVD 和其他相关疾病的临床患者的 29 份血浆样本。结果表明,该芯片在周转时间(1 小时 30 分钟总分析和测量)以及医院实验室使用的参考技术(临床分析仪)所提供的信息量方面具有提供与疾病相关的临床信息的卓越能力。尽管未能在报告的阈值上检测到 c-TnI,但微阵列技术可能成为早期诊断心血管疾病、监测其进展并最终提供有关罹患心肌梗塞的显着潜在风险的信息。这里报道的微阵列芯片可能是实现强大的多重诊断技术的起点,用于诊断CVD或在疾病的不同阶段已鉴定出生物标志物的任何其他病理学。
图形概要
"点击查看英文标题和摘要"
A multiplexed immunochemical microarray for the determination of cardiovascular disease biomarkers
A fluorescence antibody microarray has been developed for the determination of relevant cardiovascular disease biomarkers for the analysis of human plasma samples. Recording characteristic protein molecular fingerprints to assess individual’s states of health could allow diagnosis to go beyond the simple identification of the disease, providing information on its stage or prognosis. Precisely, cardiovascular diseases (CVDs) are complex disorders which involve different degenerative processes encompassing a collection of biomarkers related to disease progression or stage. The novel approach that we propose is a fluorescent microarray chip has been developed accomplishing simultaneous determination of the most significant cardiac biomarkers in plasma aiming to determine the CVD status stage of the patient. As proof of concept, we have chosen five relevant biomarkers, C-reactive protein (CRP) as biomarker of inflammation, cystatin C (CysC) as biomarker of renal failure that is directly related with heart failure, cardiac troponin I (cTnI) as already established biomarker for cardiac damage, heart fatty acid binding protein as biomarker of ischemia (H-FABP), and finally, NT-proBNP (N-terminal pro-brain natriuretic peptide), a well-established heart failure biomarker. After the optimization of the multiplexed microarray, the assay allowed the simultaneous determination of 5 biomarkers in a buffer solution reaching LODs of 15 ± 5, 3 ± 1, 24 ± 3, 25 ± 3, and 3 ± 1 ng mL−1, for CRP, CysC, H-FABP, cTnI, and NT-proBNP, respectively. After solving the matrix effect, and demonstrating the accuracy for each biomarker, the chip was able to determine 24 samples per microarray chip. Then, the microarray has been used on a small pilot clinical study with 29 plasma samples from clinical patients which suffered different CVD and other related disorders. Results show the superior capability of the chip to provide clinical information related to the disease in terms of turnaround time (1 h 30 min total assay and measurement) and amount of information delivered in respect to reference technologies used in hospital laboratories (clinical analyzers). Despite the failure to detect c-TnI at the reported threshold, the microarray technology could be a powerful approach to diagnose the cardiovascular disease at early stage, monitor its progress, and eventually providing information about an eminent potential risk of suffering a myocardial infarction. The microarray chip here reported could be the starting point for achieving powerful multiplexed diagnostic technologies for the diagnosis of CVDs or any other pathology for which biomarkers have been identified at different stages of the disease.
Graphical Abstract