Metallurgist ( IF 0.8 ) Pub Date : 2023-12-28 , DOI: 10.1007/s11015-023-01586-1 A. M. Klyushnikov , V. P. Chentsov , S. N. Agafonov , S. V. Sergeeva , L. I. Leontiev
The density and surface tension of homogeneous molten slags from the joint smelting of nickel saprolite and copper pyrite ores have been experimentally assessed (maximum bubble pressure method) using model samples of iron-containing slage (8.9 wt.% CaO + 11.8 wt.% MgO + 12.5 wt.% Al2O3 + 47.4 wt.% SiO2 + 13.3 wt.% FeO + 5.0 wt.% Fe2O3) and iron-free slag (12.5 wt.% CaO + 16.0 wt.% MgO + 9.4 wt.% Al2O3 + 58.3 wt.% SiO2), which represent the composition and structure of real prototypes in the temperature ranges of 1550–1300°C and 1550–1400°C, respectively. A decrease in temperature leads to an increase in the density and surface tension of these slags in the ranges of 1.85–2.21 and 2.23–2.29 g·cm–3 and 144–250 and 340–345 mN·m–1, respectively. The structural changes after the change over from the former composition to the latter one are due to the decrease in basicity from 0.7 to 0.6 and the replacement of Fe2+ by Ca2+ and Mg2+. The latter factor makes the major contribution to the increase of the characteristics themselves and their temperature coefficients (from –0.0015 to –0.0004 g·cm–3·°C–1 and from –0.4 to –0.1 mN·m–1·°C–1, respectively). The regression analysis of the experimental data was performed to obtain empirical models that accurately predict the density and surface tension of real slags from the smelting of copper and nickel raw materials in the temperature range considered. The results obtained can be used in developing and improving metallurgical technologies and in the glass and ceramic industries.
中文翻译:
镍腐泥土和铜黄铁矿联合冶炼炉渣的密度和表面张力
使用含铁矿渣模型样品(8.9 wt.% CaO + 11.8 wt.% MgO)对来自镍腐泥土和黄铁矿矿石联合熔炼的均质熔渣的密度和表面张力进行了实验评估(最大气泡压力法) + 12.5 wt.% Al 2 O 3 + 47.4 wt.% SiO 2 + 13.3 wt.% FeO + 5.0 wt.% Fe 2 O 3 ) 和无铁炉渣 (12.5 wt.% CaO + 16.0 wt.% MgO + 9.4 wt.% Al 2 O 3 + 58.3 wt.% SiO 2 ),分别代表了真实原型在 1550–1300°C 和 1550–1400°C 温度范围内的成分和结构。温度降低导致这些炉渣的密度和表面张力分别增加,范围为1.85–2.21和2.23–2.29 g·cm –3以及144–250和340–345 mN·m –1。从前一种成分转变为后一种成分后的结构变化是由于碱度从0.7降低到0.6以及Fe 2+被Ca 2+和Mg 2+取代所致。后一个因素对特性本身及其温度系数的增加做出了主要贡献(从 –0.0015 至 –0.0004 g·cm –3 ·°C –1和从 –0.4 至 –0.1 mN·m –1 ·°C)–1,分别)。对实验数据进行回归分析,以获得经验模型,准确预测在考虑的温度范围内铜和镍原料冶炼的真实炉渣的密度和表面张力。获得的结果可用于开发和改进冶金技术以及玻璃和陶瓷行业。