Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Biaxially Conjugated Materials for Organic Solar Cells
ACS Nano ( IF 15.8 ) Pub Date : 2023-12-26 , DOI: 10.1021/acsnano.3c11193 Baobing Fan 1, 2 , Huanhuan Gao 2, 3, 4 , Alex K-Y Jen 1, 2, 4, 5, 6
ACS Nano ( IF 15.8 ) Pub Date : 2023-12-26 , DOI: 10.1021/acsnano.3c11193 Baobing Fan 1, 2 , Huanhuan Gao 2, 3, 4 , Alex K-Y Jen 1, 2, 4, 5, 6
Affiliation
Organic solar cells (OSCs) represent one of the most important emerging photovoltaic technologies that can implement solar energy conversion efficiently. The chemical structure of organic semiconductors deployed in the active layer of OSCs plays a critical role in the photovoltaic performance and chemical/physical stability of relevant devices. With the structure innovation of organic semiconductors, especially nonfullerene acceptors (NFAs), the performance of OSCs have been promoted rapidly in recent years, with state-of-the-art power conversion efficiencies (PCEs) exceeding 19.5%. Compared with other photovoltaics like perovskite, the shortcoming of OSCs mainly lies in the high nonradiative recombination loss. However, the photocurrent density is superior in OSCs owing to the easy modulation of the NFA band gap toward the near-infrared region. In these regards, the effort to further boost the PCE of OSCs to achieve a milestone >21% should be devoted to reducing the nonradiative loss while further broadening the absorption band. Developing organic semiconductors with biaxially extended conjugated structures has provided a potential solution to achieve these goals. Herein, we summarize the design rules and performance progress of biaxially extended conjugated materials for OSCs. The descriptions are divided into two major categories, i.e., polymers and NFAs. For p-type polymers, we focus on the biaxial conjugation on some representative building blocks, e.g., polythiophene, triphenylamine, and quinoxaline. Whereas for n-type polymers, some structures with large conjugated planes in the normal direction are presented. We also elaborate on the biaxial conjugation strategies in NFAs with modification site at either the π-core or side-group. The general structure–property relationships are further retrieved within these materials, with focus on the short-wavelength absorption and nonradiative energy loss. Finally, we provide an outlook for the further structure modification strategies of biaxially conjugated materials toward highly efficient, stable, and industry-compatible OSCs.
中文翻译:
用于有机太阳能电池的双轴共轭材料
有机太阳能电池(OSC)代表了可以有效实现太阳能转换的最重要的新兴光伏技术之一。 OSC活性层中有机半导体的化学结构对于相关器件的光伏性能和化学/物理稳定性起着至关重要的作用。随着有机半导体特别是非富勒烯受体(NFA)的结构创新,近年来OSC的性能得到了迅速提升,最先进的功率转换效率(PCE)超过19.5%。与钙钛矿等其他光伏材料相比,OSCs的缺点主要在于非辐射复合损耗较高。然而,由于NFA带隙易于向近红外区域调制,因此OSC的光电流密度较高。在这些方面,进一步提高OSC的PCE以达到>21%的里程碑的努力应致力于减少非辐射损耗,同时进一步拓宽吸收带。开发具有双轴延伸共轭结构的有机半导体为实现这些目标提供了潜在的解决方案。在此,我们总结了用于OSC的双轴延伸共轭材料的设计规则和性能进展。描述分为两大类,即聚合物和NFA。对于p型聚合物,我们重点关注一些代表性结构单元的双轴共轭,例如聚噻吩、三苯胺和喹喔啉。而对于n型聚合物,则呈现出一些在法线方向上具有大共轭平面的结构。我们还详细阐述了 NFA 中修饰位点位于 π 核心或侧基的双轴共轭策略。 在这些材料中进一步检索一般结构-性能关系,重点关注短波长吸收和非辐射能量损失。最后,我们对双轴共轭材料的进一步结构修饰策略对高效、稳定和工业兼容的 OSC 进行了展望。
更新日期:2023-12-26
中文翻译:
用于有机太阳能电池的双轴共轭材料
有机太阳能电池(OSC)代表了可以有效实现太阳能转换的最重要的新兴光伏技术之一。 OSC活性层中有机半导体的化学结构对于相关器件的光伏性能和化学/物理稳定性起着至关重要的作用。随着有机半导体特别是非富勒烯受体(NFA)的结构创新,近年来OSC的性能得到了迅速提升,最先进的功率转换效率(PCE)超过19.5%。与钙钛矿等其他光伏材料相比,OSCs的缺点主要在于非辐射复合损耗较高。然而,由于NFA带隙易于向近红外区域调制,因此OSC的光电流密度较高。在这些方面,进一步提高OSC的PCE以达到>21%的里程碑的努力应致力于减少非辐射损耗,同时进一步拓宽吸收带。开发具有双轴延伸共轭结构的有机半导体为实现这些目标提供了潜在的解决方案。在此,我们总结了用于OSC的双轴延伸共轭材料的设计规则和性能进展。描述分为两大类,即聚合物和NFA。对于p型聚合物,我们重点关注一些代表性结构单元的双轴共轭,例如聚噻吩、三苯胺和喹喔啉。而对于n型聚合物,则呈现出一些在法线方向上具有大共轭平面的结构。我们还详细阐述了 NFA 中修饰位点位于 π 核心或侧基的双轴共轭策略。 在这些材料中进一步检索一般结构-性能关系,重点关注短波长吸收和非辐射能量损失。最后,我们对双轴共轭材料的进一步结构修饰策略对高效、稳定和工业兼容的 OSC 进行了展望。