当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pathways Toward Efficient and Durable Anion Exchange Membrane Water Electrolyzers Enabled By Electro-Active Porous Transport Layers
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-12-26 , DOI: 10.1002/aenm.202303629
Andrew W. Tricker 1 , Tugrul Y. Ertugrul 1 , Jason K. Lee 1 , Jason R. Shin 1, 2 , Woong Choi 1 , Douglas I. Kushner 1 , Guanzhi Wang 1 , Jack Lang 3 , Iryna V. Zenyuk 3 , Adam Z. Weber 1 , Xiong Peng 1
Affiliation  

Green hydrogen, produced via water electrolysis using renewable electricity, will play a crucial role in decarbonizing industrial and heavy-duty transportation sectors. Anion exchange membrane water electrolyzers (AEMWEs) can overcome many of the performance and cost limitations of incumbent technologies, however, still suffer from durability challenges due to oxidative instability of anion-exchange ionomers. Herein, the use of an electro-active porous transport layer as anode (PTL-electrode) is demonstrated to enable efficient and durable AEMWEs. The stainless-steel PTL-electrodes are shown to have superior performance and durability compared to traditional catalyst layers containing ionomer and nanoparticle catalysts. An AEMWE cell operating at 2 A cm−2 for over 600 h exhibited a degradation rate of just 5 µV h−1. During operation, the surface composition of the stainless steel transforms into a mixture of iron and nickel oxyhydroxides, contributing to enhanced oxygen-evolution reaction activity. The combination of experimental work and modeling elucidates how the bulk structure of the PTL-electrode offers an additional design dimension to further improve electrolyzer performance. Lastly, a surface modification strategy is applied to a PTL-electrode to achieve an even higher performing AEMWE (2.3 vs 2.0 A cm−2 at 1.8 V). Overall, this work lays out pathways toward more efficient, durable, and affordable AEMWEs.

中文翻译:

电活性多孔传输层实现高效耐用阴离子交换膜水电解槽的途径

利用可再生电力通过水电解生产的绿色氢将在工业和重型运输部门脱碳方面发挥至关重要的作用。阴离子交换膜水电解槽 (AEMWE) 可以克服现有技术的许多性能和成本限制,但由于阴离子交换离聚物的氧化不稳定性,仍然面临耐久性挑战。在此,证明使用电活性多孔传输层作为阳极(PTL 电极)可以实现高效且耐用的 AEMWE。与含有离聚物和纳米颗粒催化剂的传统催化剂层相比,不锈钢 PTL 电极具有卓越的性能和耐用性。AEMWE 电池在 2 A cm -2下运行超过 600 小时,其退化率仅为 5 µV h -1。在操作过程中,不锈钢的表面成分转变为铁和羟基氧化镍的混合物,有助于增强析氧反应活性。实验工作和建模相结合,阐明了 PTL 电极的整体结构如何提供额外的设计维度,以进一步提高电解槽的性能。最后,对 PTL 电极应用表面改性策略,以实现更高性能的 AEMWE(1.8 V 时为 2.3 vs 2.0 A cm -2)。总体而言,这项工作为实现更高效、更耐用、更经济的 AEMWE 奠定了道路。
更新日期:2023-12-26
down
wechat
bug