当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Improved Thermoelectric Performance of p-Type PbTe by Entropy Engineering and Temperature-Dependent Precipitates
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-12-26 , DOI: 10.1021/acsami.3c16495
Manhong Zhang 1, 2 , Jianfeng Cai 2, 3 , Feng Gao 2 , Zongwei Zhang 2 , Mancang Li 4 , Zhiyu Chen 4 , Yu Wang 4 , Ding Hu 1, 2 , Xiaojian Tan 2, 3 , Guoqiang Liu 2, 3 , Song Yue 1 , Jun Jiang 2, 3
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-12-26 , DOI: 10.1021/acsami.3c16495
Manhong Zhang 1, 2 , Jianfeng Cai 2, 3 , Feng Gao 2 , Zongwei Zhang 2 , Mancang Li 4 , Zhiyu Chen 4 , Yu Wang 4 , Ding Hu 1, 2 , Xiaojian Tan 2, 3 , Guoqiang Liu 2, 3 , Song Yue 1 , Jun Jiang 2, 3
Affiliation
![]() |
Entropy engineering is aneffective scheme to reduce the thermal conductivity of thermoelectric materials, but it inevitably deteriorates the carrier mobility. Here, we report the optimization of thermoelectric performance of PbTe by combining entropy engineering and nanoprecipitates. In the continuously tuned compounds of Pb0.98Na0.02Te(1–2x)SxSex, we show that the x = 0.05 sample exhibits an exceptionally low thermal conductivity relative to its configuration entropy. By introducing Mn doping, the produced temperature-dependent nanoprecipitates of MnSe cause the high-temperature thermal conductivity to be further reduced. A very low lattice thermal conductivity of 0.38 W m–1 K–1 is achieved at 825 K. Meanwhile, the carrier mobility of the samples is only slightly influenced, owing to the well-controlled configuration entropy and the size of nanoprecipitates. Finally, a high peak zT of ∼2.1 at 825 K is obtained in the Pb0.9Na0.04Mn0.06Te0.9S0.05Se0.05 alloy.
中文翻译:
通过熵工程和温度相关沉淀改善 p 型 PbTe 的热电性能
熵工程是降低热电材料热导率的有效方案,但它不可避免地恶化了载流子迁移率。在这里,我们报告了通过结合熵工程和纳米沉淀物来优化 PbTe 的热电性能。在连续调谐的 Pb 0.98 Na 0.02 Te (1–2 x ) S x Se x化合物中,我们表明x = 0.05 样品相对于其构型熵表现出极低的导热率。通过引入Mn掺杂,产生的MnSe随温度变化的纳米沉淀物导致高温热导率进一步降低。在 825 K 时实现了 0.38 W m –1 K –1的非常低的晶格热导率。同时,由于构型熵和纳米沉淀物尺寸的良好控制,样品的载流子迁移率仅受到轻微影响。最后,Pb 0.9 Na 0.04 Mn 0.06 Te 0.9 S 0.05 Se 0.05合金在 825 K 处获得了~2.1 的峰值zT 。
更新日期:2023-12-26
中文翻译:

通过熵工程和温度相关沉淀改善 p 型 PbTe 的热电性能
熵工程是降低热电材料热导率的有效方案,但它不可避免地恶化了载流子迁移率。在这里,我们报告了通过结合熵工程和纳米沉淀物来优化 PbTe 的热电性能。在连续调谐的 Pb 0.98 Na 0.02 Te (1–2 x ) S x Se x化合物中,我们表明x = 0.05 样品相对于其构型熵表现出极低的导热率。通过引入Mn掺杂,产生的MnSe随温度变化的纳米沉淀物导致高温热导率进一步降低。在 825 K 时实现了 0.38 W m –1 K –1的非常低的晶格热导率。同时,由于构型熵和纳米沉淀物尺寸的良好控制,样品的载流子迁移率仅受到轻微影响。最后,Pb 0.9 Na 0.04 Mn 0.06 Te 0.9 S 0.05 Se 0.05合金在 825 K 处获得了~2.1 的峰值zT 。