当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Long-Range Confinement-Driven Enrichment of Surface Oxygen-Relevant Species Promotes C−C Electrocoupling in CO2 Reduction
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-12-24 , DOI: 10.1002/aenm.202303118
Fuping Pan 1, 2 , Xinyi Duan 3 , Lingzhe Fang 4 , Haoyang Li 1 , Zhen Xu 1 , Yu Wang 1 , Teng Wang 1 , Tao Li 4 , Zhiyao Duan 3 , Kai‐Jie Chen 1
Affiliation  

CO2 reduction is a highly attractive route to transform CO2 into useful feedstocks, of which C2 products are more desired than C1, yet face high kinetic barriers of C−C electrocoupling. Here, the engineering of pore-enabled local confinement reaction environments is reported for tuning the enrichment of surface-adsorbed oxygen-relevant species and the establishment of their pronounced benefits in promoting C−C coupling over oxide-derived Cu-based catalysts. A new approach of utilizing the microphase separation of a block copolymer is developed to fabricate bicontinuous mesoporous CuO nanofibers (CuO-BPNF). The enhanced confinement from long-range mesochannels enables the adsorption of OHad/Oad on the Cu surface at a wide negative potential range of −0.7 – −1.3 V in CO2 reduction, which cannot be achieved over conventional deficient and short-range pores. Constant-potential DFT calculations reveal that the surface-bound oxygen species weakens *CO affinity with the Cu (111) surface and lowers the kinetic barriers for both *CO−CO dimerization and *CO hydrogenation to enable *CO−CHO coupling. Accordingly, a CO2-to-C2 Faradaic efficiency of 74.7% over CuO-BPNF is shown, significantly larger than counterparts with conventional pores. This work offers a general design principle of confinement engineering to manage the adsorption of reactive species for steering reaction pathways in interfacial catalysis.

中文翻译:

长距离约束驱动的表面氧相关物质的富集促进 CO2 还原中的 C−C 电耦合

CO 2还原是将CO 2转化为有用原料的一种极具吸引力的途径,其中C 2产物比C 1更受欢迎,但面临着CC电耦合的高动力学障碍。在这里,报道了启用孔隙的局部限制反应环境的工程,用于调整表面吸附的氧相关物质的富集,并确定它们在促进氧化物衍生的铜基催化剂上的 C−C 耦合方面的显着优势。开发了一种利用嵌段共聚物的微相分离来制造双连续介孔氧化铜纳米纤维(CuO-BPNF)的新方法。长程介孔通道的增强限制使得 OH ad /O ad在 CO 2还原中在 -0.7 – -1.3 V 的宽负电势范围内吸附在 Cu 表面上,这是传统的缺陷和短程通道无法实现的毛孔。恒电位DFT计算表明,表面结合的氧物质削弱了*CO与Cu(111)表面的亲和力,并降低了*CO−CO二聚和*CO氢化的动力学障碍,从而实现了*CO−CHO偶联。因此,与CuO-BPNF相比,CO 2 -to-C 2法拉第效率为74.7%,明显大于具有常规孔的对应物。这项工作提供了限制工程的一般设计原理,以管理活性物质的吸附,以控制界面催化中的反应路径。
更新日期:2023-12-24
down
wechat
bug