当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Topology-Enabled Simultaneous Enhancement of Mechanical and Healable Properties in Glassy Polymeric Materials Using Larger POSS
Chemistry of Materials ( IF 7.2 ) Pub Date : 2023-12-22 , DOI: 10.1021/acs.chemmater.3c02790 Xiong Lin 1 , Ming-Xi Nie 1 , Han Liu 1 , Dai-Lin Zhou 1 , Si-Rui Fu 1 , Qin Zhang 1 , Di Han 1 , Qiang Fu 1
Chemistry of Materials ( IF 7.2 ) Pub Date : 2023-12-22 , DOI: 10.1021/acs.chemmater.3c02790 Xiong Lin 1 , Ming-Xi Nie 1 , Han Liu 1 , Dai-Lin Zhou 1 , Si-Rui Fu 1 , Qin Zhang 1 , Di Han 1 , Qiang Fu 1
Affiliation
Mechanically robust yet healable glassy polymeric materials (HGPMs) are poised for use as next-generation structural and protective materials. However, achieving such materials remains a great challenge due to the inherent conflict between good mechanical properties and adequate molecular mobility required for healing. Herein, we investigate the variations of network topology in HGPMs, leading to simultaneously enhanced mechanical and healable properties. The materials (T8-UPy8, T10-UPy10, and T12-UPy12) are fabricated by combining multiple hydrogen bonds with T8, T10, and T12 polyhedral oligomeric silsesquioxanes (POSSs), respectively, which have identical chemical components yet distinct topologies. It is found that the topological effects arising from the POSS cage size and/or symmetry strongly affect the materials’ elastic modulus (E), glass transition temperature (Tg), and healing temperature (Th). Notably, T10-UPy10 and T12-UPy12 exhibit lower Tg (59.5 and 65.4 °C) and Th (65 and 70 °C) yet higher E (5.0 and 6.0 GPa) compared to those of T8-UPy8. Elaborate comparisons underscore the instrumental contribution of larger POSS-based topological structures, revealing that the larger POSSs contribute to higher molecular mobility with tighter internal framework structures. Meanwhile, these materials possess high pencil hardness, transparency, and exceptional flexibility, making them well-suited for robust flexible protective coatings. This work highlights the significance of the topology, particularly a larger POSS, for fabricating advanced HGPMs.
中文翻译:
使用更大的 POSS 通过拓扑同时增强玻璃状聚合物材料的机械性能和可修复性能
机械坚固且可修复的玻璃状聚合物材料(HGPM)有望用作下一代结构和防护材料。然而,由于良好的机械性能和愈合所需的足够的分子迁移率之间存在固有的冲突,实现这种材料仍然是一个巨大的挑战。在此,我们研究了 HGPM 中网络拓扑的变化,从而同时增强了机械和可修复性能。该材料(T 8 -UPy 8、T 10 -UPy 10和T 12 -UPy 12)分别通过多个氢键与T 8、T 10和T 12多面体低聚倍半硅氧烷(POSS)结合而制备,其具有相同的化学成分但不同的拓扑结构。研究发现,POSS 笼尺寸和/或对称性产生的拓扑效应强烈影响材料的弹性模量 ( E )、玻璃化转变温度 ( Tg )和愈合温度 ( Th )。值得注意的是,与 T 8 - 相比,T 10 -UPy 10和 T 12 -UPy 12表现出较低的T g (59.5 和 65.4 °C) 和T h (65 和 70 °C),但具有较高的E (5.0 和 6.0 GPa) - UPy 8 . 详细的比较强调了基于 POSS 的较大拓扑结构的重要贡献,揭示了较大的 POSS 有助于提高分子迁移率和更紧密的内部框架结构。同时,这些材料具有高铅笔硬度、透明度和卓越的柔韧性,使其非常适合坚固的柔性保护涂层。这项工作强调了拓扑结构(尤其是更大的 POSS)对于制造先进 HGPM 的重要性。
更新日期:2023-12-22
中文翻译:
使用更大的 POSS 通过拓扑同时增强玻璃状聚合物材料的机械性能和可修复性能
机械坚固且可修复的玻璃状聚合物材料(HGPM)有望用作下一代结构和防护材料。然而,由于良好的机械性能和愈合所需的足够的分子迁移率之间存在固有的冲突,实现这种材料仍然是一个巨大的挑战。在此,我们研究了 HGPM 中网络拓扑的变化,从而同时增强了机械和可修复性能。该材料(T 8 -UPy 8、T 10 -UPy 10和T 12 -UPy 12)分别通过多个氢键与T 8、T 10和T 12多面体低聚倍半硅氧烷(POSS)结合而制备,其具有相同的化学成分但不同的拓扑结构。研究发现,POSS 笼尺寸和/或对称性产生的拓扑效应强烈影响材料的弹性模量 ( E )、玻璃化转变温度 ( Tg )和愈合温度 ( Th )。值得注意的是,与 T 8 - 相比,T 10 -UPy 10和 T 12 -UPy 12表现出较低的T g (59.5 和 65.4 °C) 和T h (65 和 70 °C),但具有较高的E (5.0 和 6.0 GPa) - UPy 8 . 详细的比较强调了基于 POSS 的较大拓扑结构的重要贡献,揭示了较大的 POSS 有助于提高分子迁移率和更紧密的内部框架结构。同时,这些材料具有高铅笔硬度、透明度和卓越的柔韧性,使其非常适合坚固的柔性保护涂层。这项工作强调了拓扑结构(尤其是更大的 POSS)对于制造先进 HGPM 的重要性。