Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
N-Doped Carbon Nanonecklaces with Encapsulated BiOCl Nanoparticles as High-Rate Anodes for Lithium-Ion Batteries
Langmuir ( IF 3.7 ) Pub Date : 2023-12-21 , DOI: 10.1021/acs.langmuir.3c03052 Jintong Li 1, 2 , Cunyuan Pei 2 , Song Yang 2 , Dongmei Zhang 2 , Bing Sun 2 , Zexiang Shen 2 , Shibing Ni 2
Langmuir ( IF 3.7 ) Pub Date : 2023-12-21 , DOI: 10.1021/acs.langmuir.3c03052 Jintong Li 1, 2 , Cunyuan Pei 2 , Song Yang 2 , Dongmei Zhang 2 , Bing Sun 2 , Zexiang Shen 2 , Shibing Ni 2
Affiliation
The unique two-dimensional layered structure of BiOCl makes it highly promising for energy storage applications. In this study, we successfully synthesized BiOCl nanoparticles encapsulated in N-doped carbon nanonecklaces (BiOCl NPs/N-CNNs) using well-established electrospinning and solvothermal substitution. As an anode material for lithium-ion batteries, BiOCl NPs/N-CNNs exhibited enhanced rate performance, delivering a capacity of 220.2 mA h g–1 at 8 A g–1. Furthermore, it demonstrated remarkable long cycle stability, retaining a capacity of 200.5 mA h g–1 after 9000 cycles with a discharge rate of 8.0 A g–1. The superior electrochemical performance can be attributed to the stacked layered structure of BiOCl, facilitated by van der Waals force, as well as the ingenious nanonecklace structures. These structures not only provide fast ion diffusion pathways but also enhance electrolyte penetration and offer more active sites for Li+ insertion and extraction. Additionally, the nanonecklace structure prevents the aggregation of nanopolyhedra, promoting the complete reaction of BiOCl with Li+. Moreover, the unique nanopolyhedron structure alleviates the stress caused by the volume expansion of Bi nanoparticles during cycling and reduces the internal resistance of the electrode.
中文翻译:
具有封装 BiOCl 纳米粒子的 N 掺杂碳纳米项链作为锂离子电池的高倍率阳极
BiOCl独特的二维层状结构使其在储能应用方面极具前景。在这项研究中,我们使用成熟的静电纺丝和溶剂热替代法成功合成了封装在 N 掺杂碳纳米项链中的 BiOCl 纳米颗粒(BiOCl NP/N-CNN)。作为锂离子电池的负极材料,BiOCl NPs/N-CNN 表现出增强的倍率性能,在 8 A g –1下的容量为 220.2 mA hg –1 。此外,它还表现出卓越的长循环稳定性,在 8.0 A g –1的放电倍率下循环 9000 次后容量仍保持在 200.5 mA hg –1 。优异的电化学性能可归因于范德华力促进的 BiOCl 的堆叠层状结构以及巧妙的纳米项链结构。这些结构不仅提供快速的离子扩散路径,而且还增强电解质渗透并为Li +嵌入和脱出提供更多的活性位点。此外,纳米项链结构可以防止纳米多面体的聚集,促进BiOCl与Li +的完全反应。此外,独特的纳米多面体结构减轻了循环过程中Bi纳米粒子体积膨胀引起的应力,降低了电极的内阻。
更新日期:2023-12-21
中文翻译:
具有封装 BiOCl 纳米粒子的 N 掺杂碳纳米项链作为锂离子电池的高倍率阳极
BiOCl独特的二维层状结构使其在储能应用方面极具前景。在这项研究中,我们使用成熟的静电纺丝和溶剂热替代法成功合成了封装在 N 掺杂碳纳米项链中的 BiOCl 纳米颗粒(BiOCl NP/N-CNN)。作为锂离子电池的负极材料,BiOCl NPs/N-CNN 表现出增强的倍率性能,在 8 A g –1下的容量为 220.2 mA hg –1 。此外,它还表现出卓越的长循环稳定性,在 8.0 A g –1的放电倍率下循环 9000 次后容量仍保持在 200.5 mA hg –1 。优异的电化学性能可归因于范德华力促进的 BiOCl 的堆叠层状结构以及巧妙的纳米项链结构。这些结构不仅提供快速的离子扩散路径,而且还增强电解质渗透并为Li +嵌入和脱出提供更多的活性位点。此外,纳米项链结构可以防止纳米多面体的聚集,促进BiOCl与Li +的完全反应。此外,独特的纳米多面体结构减轻了循环过程中Bi纳米粒子体积膨胀引起的应力,降低了电极的内阻。