Nature Nanotechnology ( IF 38.1 ) Pub Date : 2023-12-22 , DOI: 10.1038/s41565-023-01545-6 Paul Le Floch 1, 2 , Siyuan Zhao 1 , Ren Liu 1 , Nicola Molinari 1 , Eder Medina 1 , Hao Shen 1 , Zheliang Wang 3 , Junsoo Kim 1 , Hao Sheng 1 , Sebastian Partarrieu 1 , Wenbo Wang 1 , Chanan Sessler 4, 5 , Guogao Zhang 1 , Hyunsu Park 2 , Xian Gong 2 , Andrew Spencer 2 , Jongha Lee 2 , Tianyang Ye 2 , Xin Tang 1 , Xiao Wang 4, 5 , Katia Bertoldi 1 , Nanshu Lu 3 , Boris Kozinsky 1, 6 , Zhigang Suo 1 , Jia Liu 1
Electronic devices for recording neural activity in the nervous system need to be scalable across large spatial and temporal scales while also providing millisecond and single-cell spatiotemporal resolution. However, existing high-resolution neural recording devices cannot achieve simultaneous scalability on both spatial and temporal levels due to a trade-off between sensor density and mechanical flexibility. Here we introduce a three-dimensional (3D) stacking implantable electronic platform, based on perfluorinated dielectric elastomers and tissue-level soft multilayer electrodes, that enables spatiotemporally scalable single-cell neural electrophysiology in the nervous system. Our elastomers exhibit stable dielectric performance for over a year in physiological solutions and are 10,000 times softer than conventional plastic dielectrics. By leveraging these unique characteristics we develop the packaging of lithographed nanometre-thick electrode arrays in a 3D configuration with a cross-sectional density of 7.6 electrodes per 100 µm2. The resulting 3D integrated multilayer soft electrode array retains tissue-level flexibility, reducing chronic immune responses in mouse neural tissues, and demonstrates the ability to reliably track electrical activity in the mouse brain or spinal cord over months without disrupting animal behaviour.
中文翻译:
基于氟化弹性体的 3D 时空可扩展体内神经探针
用于记录神经系统中的神经活动的电子设备需要在大空间和时间尺度上可扩展,同时还提供毫秒和单细胞时空分辨率。然而,由于传感器密度和机械灵活性之间的权衡,现有的高分辨率神经记录设备无法在空间和时间层面上同时实现可扩展性。在这里,我们介绍了一种基于全氟化介电弹性体和组织级软多层电极的三维(3D)堆叠植入式电子平台,该平台能够在神经系统中实现时空可扩展的单细胞神经电生理学。我们的弹性体在生理溶液中表现出一年多的稳定介电性能,并且比传统塑料介电质软 10,000 倍。通过利用这些独特的特性,我们开发了 3D 配置的光刻纳米厚电极阵列封装,横截面密度为每 100 µm 2 7.6 个电极。由此产生的 3D 集成多层软电极阵列保留了组织水平的灵活性,减少了小鼠神经组织中的慢性免疫反应,并证明了能够在数月内可靠地跟踪小鼠大脑或脊髓中的电活动,而不会破坏动物行为。