当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hydrogen-Bonded Supramolecular Nanotrap Enabling the Interfacial Activation of Hosted Enzymes
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-12-22 , DOI: 10.1021/jacs.3c09647 Siming Huang 1 , Jiansheng Li 1 , Yuhong Lin 2 , Linjing Tong 3 , Ningyi Zhong 3 , Anlian Huang 3 , Xiaomin Ma 4 , Shuyao Huang 5 , Wei Yi 1 , Yong Shen 2 , Guosheng Chen 3 , Gangfeng Ouyang 2
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-12-22 , DOI: 10.1021/jacs.3c09647 Siming Huang 1 , Jiansheng Li 1 , Yuhong Lin 2 , Linjing Tong 3 , Ningyi Zhong 3 , Anlian Huang 3 , Xiaomin Ma 4 , Shuyao Huang 5 , Wei Yi 1 , Yong Shen 2 , Guosheng Chen 3 , Gangfeng Ouyang 2
Affiliation
Engineering nanotraps to immobilize fragile enzymes provides new insights into designing stable and sustainable biocatalysts. However, the trade-off between activity and stability remains a long-standing challenge due to the inevitable diffusion barrier set up by nanocarriers. Herein, we report a synergetic interfacial activation strategy by virtue of hydrogen-bonded supramolecular encapsulation. The pore wall of the nanotrap, in which the enzyme is encapsulated, is modified with methyl struts in an atomically precise position. This well-designed supramolecular pore results in a synergism of hydrogen-bonded and hydrophobic interactions with the hosted enzyme, and it can modulate the catalytic center of the enzyme into a favorable configuration with high substrate accessibility and binding capability, which shows up to a 4.4-fold reaction rate and 4.9-fold conversion enhancements compared to free enzymes. This work sheds new light on the interfacial activation of enzymes using supramolecular engineering and also showcases the feasibility of interfacial assembly to access hierarchical biocatalysts featuring high activity and stability simultaneously.
中文翻译:
氢键超分子纳米陷阱能够实现承载酶的界面激活
设计纳米陷阱来固定脆弱的酶为设计稳定和可持续的生物催化剂提供了新的见解。然而,由于纳米载体不可避免地会产生扩散势垒,活性和稳定性之间的权衡仍然是一个长期存在的挑战。在此,我们报告了一种利用氢键超分子封装的协同界面活化策略。纳米陷阱的孔壁(酶被封装在其中)在原子级精确的位置上用甲基支柱进行了修饰。这种精心设计的超分子孔导致与宿主酶的氢键和疏水相互作用的协同作用,并且可以将酶的催化中心调节成具有高底物可及性和结合能力的有利构型,其显示高达4.4与游离酶相比,反应速率提高 3 倍,转化率提高 4.9 倍。这项工作为利用超分子工程进行酶的界面活化提供了新的思路,并展示了通过界面组装获得同时具有高活性和稳定性的多级生物催化剂的可行性。
更新日期:2023-12-22
中文翻译:
氢键超分子纳米陷阱能够实现承载酶的界面激活
设计纳米陷阱来固定脆弱的酶为设计稳定和可持续的生物催化剂提供了新的见解。然而,由于纳米载体不可避免地会产生扩散势垒,活性和稳定性之间的权衡仍然是一个长期存在的挑战。在此,我们报告了一种利用氢键超分子封装的协同界面活化策略。纳米陷阱的孔壁(酶被封装在其中)在原子级精确的位置上用甲基支柱进行了修饰。这种精心设计的超分子孔导致与宿主酶的氢键和疏水相互作用的协同作用,并且可以将酶的催化中心调节成具有高底物可及性和结合能力的有利构型,其显示高达4.4与游离酶相比,反应速率提高 3 倍,转化率提高 4.9 倍。这项工作为利用超分子工程进行酶的界面活化提供了新的思路,并展示了通过界面组装获得同时具有高活性和稳定性的多级生物催化剂的可行性。