当前位置:
X-MOL 学术
›
Adv. Mater. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Stretchable and Strain-Limiting, Bio-Inspired Nanofiber-Reinforced Microfiber for Wearable Electronics
Advanced Materials Technologies ( IF 6.4 ) Pub Date : 2023-12-21 , DOI: 10.1002/admt.202301643 Adeela Hanif 1 , Junho Park 2 , Dohui Kim 1 , Jaeseung Youn 1 , Unyong Jeong 2 , Dong Sung Kim 1, 3, 4, 5
Advanced Materials Technologies ( IF 6.4 ) Pub Date : 2023-12-21 , DOI: 10.1002/admt.202301643 Adeela Hanif 1 , Junho Park 2 , Dohui Kim 1 , Jaeseung Youn 1 , Unyong Jeong 2 , Dong Sung Kim 1, 3, 4, 5
Affiliation
With existing fiber-based approaches for wearable electronics, devices with limited stretchability are not fully protected against large stretching when the wearer is participating in vigorous activities. A network of elastin and collagen fibers makes biological tissues elastic at low strains and strain-limiting at high strains, showing a J-shaped stress-strain behavior. Stretchable systems can replicate a “J-shaped stress-strain/strain-limiting” mechanical behavior of biological tissues under deformations and provide mechanical compliance and comfort to wearers. For mimicking this mechanical behavior of biological tissues, he developed a combined microfiber and nanofiber (NF)-based approach. The soft polyurethane (PU) microfiber mimicking elastin of biological tissue is wrapped with stiff poly(vinylidene fluoride)(PVDF) NFs, mimicking collagen in tissue, and dip coated in polydimethylsiloxane (PDMS). Confocal images during stretching confirmed that the PU microfiber maintained stretchability, while the stiff PVDF NFs played a role in the strain-limiting characteristics. By tailoring a loading ratio of the PVDF NFs on the PU microfiber, the elastic modulus is matched well with those of biological tissues. The stretchable conducting coating and temperature sensor on the bio-inspired microfiber showed a negligible difference in a current-time (I-T) response during static and dynamic stretching which indicated the efficient absorption of stress by the bio-inspired microfiber.
中文翻译:
用于可穿戴电子产品的可拉伸、应变限制、仿生纳米纤维增强微纤维
对于可穿戴电子产品现有的基于纤维的方法,当佩戴者参与剧烈活动时,具有有限拉伸性的设备不能完全防止大拉伸。弹性蛋白和胶原纤维的网络使生物组织在低应变下具有弹性,在高应变下具有应变限制,表现出 J 形应力应变行为。可拉伸系统可以复制生物组织在变形下的“J 形应力应变/应变限制”机械行为,并为佩戴者提供机械顺应性和舒适度。为了模仿生物组织的这种机械行为,他开发了一种基于微纤维和纳米纤维 (NF) 的组合方法。模拟生物组织弹性蛋白的柔软聚氨酯 (PU) 微纤维包裹有模拟组织中胶原蛋白的硬质聚偏二氟乙烯 (PVDF) NF,并浸涂聚二甲基硅氧烷 (PDMS)。拉伸过程中的共焦图像证实,PU 微纤维保持了拉伸性,而坚硬的 PVDF NF 在应变限制特性中发挥了作用。通过调整PVDF NF在PU微纤维上的负载比,弹性模量与生物组织的弹性模量很好地匹配。仿生微纤维上的可拉伸导电涂层和温度传感器在静态和动态拉伸过程中电流时间(IT)响应的差异可以忽略不计,这表明仿生微纤维可以有效吸收应力。
更新日期:2023-12-21
中文翻译:
用于可穿戴电子产品的可拉伸、应变限制、仿生纳米纤维增强微纤维
对于可穿戴电子产品现有的基于纤维的方法,当佩戴者参与剧烈活动时,具有有限拉伸性的设备不能完全防止大拉伸。弹性蛋白和胶原纤维的网络使生物组织在低应变下具有弹性,在高应变下具有应变限制,表现出 J 形应力应变行为。可拉伸系统可以复制生物组织在变形下的“J 形应力应变/应变限制”机械行为,并为佩戴者提供机械顺应性和舒适度。为了模仿生物组织的这种机械行为,他开发了一种基于微纤维和纳米纤维 (NF) 的组合方法。模拟生物组织弹性蛋白的柔软聚氨酯 (PU) 微纤维包裹有模拟组织中胶原蛋白的硬质聚偏二氟乙烯 (PVDF) NF,并浸涂聚二甲基硅氧烷 (PDMS)。拉伸过程中的共焦图像证实,PU 微纤维保持了拉伸性,而坚硬的 PVDF NF 在应变限制特性中发挥了作用。通过调整PVDF NF在PU微纤维上的负载比,弹性模量与生物组织的弹性模量很好地匹配。仿生微纤维上的可拉伸导电涂层和温度传感器在静态和动态拉伸过程中电流时间(IT)响应的差异可以忽略不计,这表明仿生微纤维可以有效吸收应力。