当前位置: X-MOL 学术Combinatorica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Topological Version of Hedetniemi’s Conjecture for Equivariant Spaces
Combinatorica ( IF 1.0 ) Pub Date : 2023-12-19 , DOI: 10.1007/s00493-023-00079-8
Vuong Bui , Hamid Reza Daneshpajouh

A topological version of the famous Hedetniemi conjecture says: The mapping index of the Cartesian product of two \({\mathbb {Z}}/2\)- spaces is equal to the minimum of their \({\mathbb {Z}}/2\)-indexes. The main purpose of this article is to study the topological version of the Hedetniemi conjecture for G-spaces. Indeed, we show that the topological Hedetniemi conjecture cannot be valid for general pairs of G-spaces. More precisely, we show that this conjecture can possibly survive if the group G is either a cyclic p-group or a generalized quaternion group whose size is a power of 2.



中文翻译:

Hedetniemi 等变空间猜想的拓扑版本

著名的 Hedetniemi 猜想的拓扑版本说:两个\({\mathbb {Z}}/2\) - 空间的笛卡尔积的映射索引等于它们的\({\mathbb {Z}} /2\) -索引。本文的主要目的是研究G空间的 Hedetniemi 猜想的拓扑版本。事实上,我们证明了拓扑 Hedetniemi 猜想对于一般的G空间对是不成立的。更准确地说,我们证明,如果群G是循环p群或大小为 2 的幂的广义四元数群,则该猜想可能成立。

更新日期:2023-12-19
down
wechat
bug