当前位置:
X-MOL 学术
›
Proc. IEEE
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Scanning the Issue
Proceedings of the IEEE ( IF 23.2 ) Pub Date : 2023-12-18 , DOI: 10.1109/jproc.2023.3339908
Proceedings of the IEEE ( IF 23.2 ) Pub Date : 2023-12-18 , DOI: 10.1109/jproc.2023.3339908
Traditionally, cloud platforms have been based on a single computing device type: central processing units (CPUs). One of the main reasons for this homogeneity of hardware resources has been cost efficiency—for years, cloud providers have reaped the benefits of the economies of scale by buying thousands of very similar types of servers. The homogeneity of servers has other advantages as well, for instance, easy management and scheduling of resources, and simple development and deployment of applications and tools for debugging and tracing. However, in recent years, cloud servers have undergone a significant change. They have progressively shifted to become heterogeneous platforms in which CPUs join forces with special-purpose integrated circuits, e.g., Google’s tensor processing units (TPUs), graphics processing units (GPUs), and field-programmable gate arrays (FPGAs).
中文翻译:
扫描问题
传统上,云平台基于单一计算设备类型:中央处理单元 (CPU)。硬件资源同质化的主要原因之一是成本效率——多年来,云提供商通过购买数千台非常相似类型的服务器获得了规模经济的好处。服务器同质化还有其他优点,例如资源管理和调度方便,应用程序和调试和跟踪工具的开发和部署简单。然而,近年来,云服务器发生了重大变化。它们已逐渐转变为异构平台,其中 CPU 与专用集成电路结合在一起,例如 Google 的张量处理单元 (TPU)、图形处理单元 (GPU) 和现场可编程门阵列 (FPGA)。
更新日期:2023-12-18
中文翻译:
扫描问题
传统上,云平台基于单一计算设备类型:中央处理单元 (CPU)。硬件资源同质化的主要原因之一是成本效率——多年来,云提供商通过购买数千台非常相似类型的服务器获得了规模经济的好处。服务器同质化还有其他优点,例如资源管理和调度方便,应用程序和调试和跟踪工具的开发和部署简单。然而,近年来,云服务器发生了重大变化。它们已逐渐转变为异构平台,其中 CPU 与专用集成电路结合在一起,例如 Google 的张量处理单元 (TPU)、图形处理单元 (GPU) 和现场可编程门阵列 (FPGA)。