当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Understanding the Impact of Peripheral Substitution on the Activity of Co Phthalocyanine in Sulfur Reduction Catalysis
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-12-18 , DOI: 10.1002/adfm.202313107 Xinhong Zhao 1 , Yukun Zhang 1 , Weizhe Liu 1 , Zhiqiang Zheng 1 , Zhanghua Fu 1 , Chuanzhong Chen 1 , Cheng Hu 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-12-18 , DOI: 10.1002/adfm.202313107 Xinhong Zhao 1 , Yukun Zhang 1 , Weizhe Liu 1 , Zhiqiang Zheng 1 , Zhanghua Fu 1 , Chuanzhong Chen 1 , Cheng Hu 1
Affiliation
Catalytic materials are effective in promoting sulfur utilization in lithium-sulfur batteries. Co phthalocyanine (CoPc) presents a unique planner single-molecular structure with a highly active Co-N4 center for sulfur reduction catalysis. The high flexibility of phthalocyanines offers rich opportunities for electronic structure modulation toward enhanced catalytic activities. To guide future design and screening, this study aims to understand the impact of peripheral substitution, the most common method to obtain CoPc derivatives, by examining two typical substituents: the electron-withdrawing nitro and electron-donating amino groups. Co tetranitrophthalocyanine (CoTnPc) presents a significantly higher activity in promoting the liquid-solid transition process than Co tetraaminophthalocyanine (CoTaPc). Substitution alters the stable binding geometry of Li2S4 by influencing the electrostatic potential and Li─bond, making the Co─S bond energetically favorable with the bridging S atoms on CoTnPc. CoTnPc also enables a greater electron donation from the S 3pz orbital to the singly occupied Co 3 orbital, significantly weakening the bridging S─S bond to enhance the reactivity of Li2S4 for the subsequent liquid-solid transition. A framework of theoretical calculation is tested, providing descriptors for the screening of related materials. The potential of CoPc derivatives is demonstrated by pouch cells with CoTnPc under high sulfur loading and limited electrolyte addition.
中文翻译:
了解外围取代对酞菁钴硫还原催化活性的影响
催化材料可有效促进锂硫电池中硫的利用。钴酞菁(CoPc)具有独特的平面单分子结构,具有高活性的Co-N 4中心,用于硫还原催化。酞菁的高灵活性为电子结构调节以增强催化活性提供了丰富的机会。为了指导未来的设计和筛选,本研究旨在通过检查两种典型的取代基:吸电子硝基和供电子氨基,了解外围取代(获得 CoPc 衍生物的最常见方法)的影响。四硝基酞菁钴 (CoTnPc) 在促进液-固转变过程方面表现出比四氨基酞菁钴 (CoTaPc) 显着更高的活性。取代通过影响静电势和Li─键改变了Li 2 S 4的稳定结合几何形状,使得Co─S键在能量上有利于CoTnPc上的桥接S原子。 CoTnPc 还能够从 S 3 p z轨道向单占据的 Co 3提供更多的电子 轨道,显着削弱桥接S─S键,增强Li 2 S 4随后液-固转变的反应活性。测试了理论计算框架,为相关材料的筛选提供了描述符。 CoTnPc 软包电池在高硫负载和有限电解质添加下证明了 CoPc 衍生物的潜力。
更新日期:2023-12-18
中文翻译:
了解外围取代对酞菁钴硫还原催化活性的影响
催化材料可有效促进锂硫电池中硫的利用。钴酞菁(CoPc)具有独特的平面单分子结构,具有高活性的Co-N 4中心,用于硫还原催化。酞菁的高灵活性为电子结构调节以增强催化活性提供了丰富的机会。为了指导未来的设计和筛选,本研究旨在通过检查两种典型的取代基:吸电子硝基和供电子氨基,了解外围取代(获得 CoPc 衍生物的最常见方法)的影响。四硝基酞菁钴 (CoTnPc) 在促进液-固转变过程方面表现出比四氨基酞菁钴 (CoTaPc) 显着更高的活性。取代通过影响静电势和Li─键改变了Li 2 S 4的稳定结合几何形状,使得Co─S键在能量上有利于CoTnPc上的桥接S原子。 CoTnPc 还能够从 S 3 p z轨道向单占据的 Co 3提供更多的电子