当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
EVs-on-a-Bubble: Self-Aggregated Click Bubbles Streamline Isolation and Amplified Profiling of Circulating Extracellular Vesicles
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-12-15 , DOI: 10.1002/adfm.202310823
Binqi Wei 1 , Yuanhang Xiang 1 , Xiaojie Qin 1 , Yu Yang 1 , Hao Lu 1 , Haichao Li 1 , Min Fang 2 , Xinchun Li 1 , Fan Yang 1
Affiliation  

Tumor-derived circulating extracellular vesicles (EVs) provide a non-invasive solution for cancer diagnostics, but hampered by challenges in EVs isolation and profiling. Herein, this work shows that bioorthogonal microbubbles (click bubbles) combine a panel of fluorescent aptamers for streamlined isolation and profiling of oncologic EVs in a single assay. This click bubble-driven aptasensor (cBAS) features self-aggregation, self-separation and self-enhancing in fluorescence. The facile protein phase transition renders bubble surface polyvalent with rich clickable motifs, enabling fast enrichment of EVs. Moreover, the buoyancy allows click bubbles to self-float to the droplet apex for self-aggregated fluorescence enhancement via a bubble lensing effect, thus achieving a sensitive profiling of EVs without requiring additional signal amplification or ultrasensitive detectors. By using cBAS to profile EVs surface proteins from a cohort (n = 45) across three cancer types, a machine learning algorithm enables cancer diagnosis and classification with an overall accuracy of 91%. This EVs-on-a-bubble assay is fast, sensitive, self-powered, and provides a promising tool to facilitate EVs-based cancer diagnosis in clinical settings.

中文翻译:

EVs-on-a-Bubble:自聚集的点击气泡简化了循环细胞外囊泡的分离和放大分析

肿瘤来源的循环细胞外囊泡 (EV) 为癌症诊断提供了一种非侵入性解决方案,但受到 EV 分离和分析方面的挑战的阻碍。在此,这项工作表明,生物正交微泡(点击气泡)结合了一组荧光适体,可在一次测定中简化肿瘤 EV 的分离和分析。这种点击气泡驱动适体传感器 (cBAS) 具有荧光自聚集、自分离和自增强功能。轻松的蛋白质相变使气泡表面具有丰富的可点击图案,从而实现了 EV 的快速富集。此外,浮力允许点击气泡自动漂浮到液滴顶端,通过气泡透镜效应增强自聚集荧光,从而无需额外的信号放大或超灵敏探测器即可实现对 EV 的灵敏分析。通过使用 cBAS 对三种癌症类型的队列 ( n = 45) 中的 EV 表面蛋白进行分析,机器学习算法可以实现癌症诊断和分类,总体准确率达到 91%。这种气泡上的 EV 检测快速、灵敏、自供电,为临床环境中基于 EV 的癌症诊断提供了一种有前途的工具。
更新日期:2023-12-15
down
wechat
bug