当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
MoS2 Quantum Dot-Optimized Conductive Channels for a Conjugated Polymer-Based Synaptic Memristor
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-12-16 , DOI: 10.1021/acsami.3c12674
Qiongshan Zhang 1 , Qizhi Jiang 1 , Fei Fan 2, 3 , Gang Liu 2 , Yu Chen 1 , Bin Zhang 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-12-16 , DOI: 10.1021/acsami.3c12674
Qiongshan Zhang 1 , Qizhi Jiang 1 , Fei Fan 2, 3 , Gang Liu 2 , Yu Chen 1 , Bin Zhang 1
Affiliation
![]() |
Donor–acceptor-type conjugated polymers are widely used in memristors due to their unique push–pull electron structures and charge transfer mechanisms. However, the inherently inhomogeneous microstructure of polymer films and their low crystallinity produce randomness that destabilizes formed conductive channels, giving polymer-based memristors unstable switching behavior. In this contribution, we prepared a synaptic device based on PM6–MoS2 QD (molybdenum disulfide quantum dot) nanocomposites. In the composites, MoS2 QDs provided the active centers for forming conductive channels via electron trapping and detrapping. They also controlled the directional formation of conductive channels between PM6 and MoS2 QDs, reducing randomness and giving devices a narrow switching voltage range and cycling longevity. The device exhibited continuous multistage conductance states under a direct current voltage sweep and simulated a variety of synaptic functions, including long-term potentiation, long-term depression, short-term potentiation, short-term depression, paired-pulse facilitation, spiking-rate-dependent plasticity, and “learning experience” behavior. The memristor could also perform arithmetic, including “counting” and “subtraction” operations. This work provides a new approach to improving the performance of memristors for neuromorphic computing.
中文翻译:
用于基于共轭聚合物的突触忆阻器的 MoS2 量子点优化导电通道
供体-受体型共轭聚合物因其独特的推拉电子结构和电荷转移机制而广泛应用于忆阻器中。然而,聚合物薄膜固有的不均匀微观结构及其低结晶度会产生随机性,从而破坏形成的导电通道的稳定性,从而使基于聚合物的忆阻器不稳定的开关行为。在本论文中,我们制备了一种基于 PM6– MoS2 QD(二硫化钼量子点)纳米复合材料的突触装置。在复合材料中,MoS 2 QD 提供了通过电子捕获和去捕获形成导电通道的活性中心。他们还控制 PM6 和 MoS 2 QD 之间导电通道的定向形成,减少随机性并为器件提供较窄的开关电压范围和循环寿命。该装置在直流电压扫描下表现出连续的多级电导状态,并模拟了多种突触功能,包括长期增强、长期抑制、短期增强、短期抑制、配对脉冲促进、尖峰率-依赖的可塑性和“学习经验”行为。忆阻器还可以执行算术运算,包括“计数”和“减法”运算。这项工作为提高神经形态计算忆阻器的性能提供了一种新方法。
更新日期:2023-12-16
中文翻译:

用于基于共轭聚合物的突触忆阻器的 MoS2 量子点优化导电通道
供体-受体型共轭聚合物因其独特的推拉电子结构和电荷转移机制而广泛应用于忆阻器中。然而,聚合物薄膜固有的不均匀微观结构及其低结晶度会产生随机性,从而破坏形成的导电通道的稳定性,从而使基于聚合物的忆阻器不稳定的开关行为。在本论文中,我们制备了一种基于 PM6– MoS2 QD(二硫化钼量子点)纳米复合材料的突触装置。在复合材料中,MoS 2 QD 提供了通过电子捕获和去捕获形成导电通道的活性中心。他们还控制 PM6 和 MoS 2 QD 之间导电通道的定向形成,减少随机性并为器件提供较窄的开关电压范围和循环寿命。该装置在直流电压扫描下表现出连续的多级电导状态,并模拟了多种突触功能,包括长期增强、长期抑制、短期增强、短期抑制、配对脉冲促进、尖峰率-依赖的可塑性和“学习经验”行为。忆阻器还可以执行算术运算,包括“计数”和“减法”运算。这项工作为提高神经形态计算忆阻器的性能提供了一种新方法。