当前位置:
X-MOL 学术
›
Int. J. Hydrogen Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Preparation of a high-yield Fe–N4 site-containing hierarchical porous carbon eletrocatalyst for effective oxygen reduction and zinc-air battery: The effect of dual protection-exposure mechanism
International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2023-12-16 , DOI: 10.1016/j.ijhydene.2023.12.076 Jinshi Yu , Junhao Liu , Chuangyu Wei , Wenjuan Li , Hao Liu , Wei Yan , Xue Liu , Wenmiao Chen , Xiyou Li , Yanli Chen
International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2023-12-16 , DOI: 10.1016/j.ijhydene.2023.12.076 Jinshi Yu , Junhao Liu , Chuangyu Wei , Wenjuan Li , Hao Liu , Wei Yan , Xue Liu , Wenmiao Chen , Xiyou Li , Yanli Chen
Iron-based catalysts are considered highly promising as non-noble metal catalysts for oxygen electroreduction. However, the optimization of iron-based catalysts is limited by the well-designed carbon support and high-efficiency catalytic sites. Furthermore, achieving high production yield on an industrial scale while maintaining high performance would also be highly encouraged. Therefore, a dual-protection-exposure mechanism was employed for a hierarchical porous carbon (HPC) embedded with Fe–N4 sites (Fe–N4 /HPC) catalysts, which were prepared through the ionothermal carbonization of Fe/ZnTBrPP@MgCl2 [5, 10, 15, 20-tetrakis (4′-bromophenyl) porphyrinato iron (FeTBrPP) mixed with ZnTBrPP on MgCl2 ·6H2 O template]. Apart from self-protection-exposure of the Fe/ZnTBrPP itself, the hydrated salt template provided a secondary protection and exposure simultaneously. As a result, the Fe–N4 /HPC retains more Fe–N4 sites and a larger BET surface, resulting in excellent ORR activity and durability in alkaline (0.922 V vs. RHE). Interestingly, under the conditions of using hydrated magnesium salt as a soft template, the yield rate of the Fe–N4 /HPC significantly higher than the product without hydrated salt. Furthermore, the utilization of Fe–N4 /HPC as the cathode in a zinc-air battery demonstrated remarkable performance, achieving an high peak power density (94 mW cm−2 ) and good stability.
中文翻译:
用于有效氧还原的高产率含Fe–N4位点多孔碳电催化剂和锌空气电池的制备:双重保护-暴露机制的效果
铁基催化剂被认为是非常有前途的氧电还原非贵金属催化剂。然而,铁基催化剂的优化受到精心设计的碳载体和高效催化位点的限制。此外,在保持高性能的同时,在工业规模上实现高产量也将受到强烈鼓励。因此,对嵌入 Fe-N4 位 (Fe-N4/HPC) 催化剂的多级多孔碳 (HPC) 采用了双重保护-暴露机制,该催化剂是通过 Fe/ZnTBrPP@MgCl2 的离子热碳化制备的 [5, 10, 15, 20-tetrakis (4′-bromophenyl) porphyrinato iron (FeTBrPP) 与 ZnTBrPP 在 MgCl2·6H2O 模板上混合]。除了 Fe/ZnTBrPP 本身的自我保护暴露外,水合盐模板还同时提供了二次保护和暴露。因此,Fe-N4/HPC 保留了更多的 Fe-N4 位点和更大的 BET 表面,从而在碱性环境中具有出色的 ORR 活性和耐久性(0.922 V vs. RHE)。有趣的是,在使用水合镁盐作为软模板的条件下,Fe–N4/HPC 的产率明显高于未使用水合盐的产品。此外,在锌空气电池中使用 Fe-N4/HPC 作为阴极表现出卓越的性能,实现了高峰值功率密度 (94 mW cm-2) 和良好的稳定性。
更新日期:2023-12-16
中文翻译:
用于有效氧还原的高产率含Fe–N4位点多孔碳电催化剂和锌空气电池的制备:双重保护-暴露机制的效果
铁基催化剂被认为是非常有前途的氧电还原非贵金属催化剂。然而,铁基催化剂的优化受到精心设计的碳载体和高效催化位点的限制。此外,在保持高性能的同时,在工业规模上实现高产量也将受到强烈鼓励。因此,对嵌入 Fe-N4 位 (Fe-N4/HPC) 催化剂的多级多孔碳 (HPC) 采用了双重保护-暴露机制,该催化剂是通过 Fe/ZnTBrPP@MgCl2 的离子热碳化制备的 [5, 10, 15, 20-tetrakis (4′-bromophenyl) porphyrinato iron (FeTBrPP) 与 ZnTBrPP 在 MgCl2·6H2O 模板上混合]。除了 Fe/ZnTBrPP 本身的自我保护暴露外,水合盐模板还同时提供了二次保护和暴露。因此,Fe-N4/HPC 保留了更多的 Fe-N4 位点和更大的 BET 表面,从而在碱性环境中具有出色的 ORR 活性和耐久性(0.922 V vs. RHE)。有趣的是,在使用水合镁盐作为软模板的条件下,Fe–N4/HPC 的产率明显高于未使用水合盐的产品。此外,在锌空气电池中使用 Fe-N4/HPC 作为阴极表现出卓越的性能,实现了高峰值功率密度 (94 mW cm-2) 和良好的稳定性。