当前位置: X-MOL 学术J. Energy Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fe-Nx sites coupled with core-shell FeS@C nanoparticles to boost the oxygen catalysis for rechargeable Zn-air batteries
Journal of Energy Chemistry ( IF 14.0 ) Pub Date : 2023-12-14 , DOI: 10.1016/j.jechem.2023.11.042
Katam Srinivas , Zhuo Chen , Anran Chen , Fei Ma , Ming-qiang Zhu , Yuanfu Chen

The development of efficient single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) remains a formidable challenge, primarily due to the symmetric charge distribution of metal single-atom sites (M-N4). To address such issue, herein, Fe-Nx sites coupled synergistic catalysts fabrication strategy is presented to break the uniform electronic distribution, thus enhancing the intrinsic catalytic activity. Precisely, atomically dispersed Fe-Nx sites supported on N/S-doped mesoporous carbon (NSC) coupled with FeS@C core-shell nanoparticles (FAS-NSC@950) is synthesized by a facile hydrothermal reaction and subsequent pyrolysis. Due to the presence of an in situ-grown conductive graphitic layer (shell), the FeS nanoparticles (core) effectively adjust the electronic structure of single-atom Fe sites and facilitate the ORR kinetics via short/long-range coupling interactions. Consequently, FAS-NSC@950 displays a more positive half-wave potential (E1/2) of 0.871 V with a significantly boosted ORR kinetics (Tafel slope = 52.2 mV dec−1), outpacing the commercial Pt/C (E1/2 = 0.84 V and Tafel slope = 54.6 mV dec−1). As a bifunctional electrocatalyst, it displays a smaller bifunctional activity parameter (ΔE) of 0.673 V, surpassing the Pt/C-RuO2 combination (ΔE = 0.724 V). Besides, the FAS-NSC@950-based zinc-air battery (ZAB) displays superior power density, specific capacity, and long-term cycling performance to the Pt/C-Ir/C-based ZAB. This work significantly contributes to the field by offering a promising strategy to enhance the catalytic activity of SACs for ORR, with potential implications for energy conversion and storage technologies.



中文翻译:

Fe-Nx 位点与核壳 FeS@C 纳米粒子结合,增强可充电锌空气电池的氧催化

开发用于氧还原反应(ORR)的高效单原子催化剂(SAC)仍然是一个艰巨的挑战,这主要是由于金属单原子位点(MN 4)的对称电荷分布。为了解决这个问题,本文提出了Fe-N x位点耦合协同催化剂的制备策略,以打破均匀的电子分布,从而增强固有的催化活性。准确地说,通过简单的水热反应和随后的热解合成了负载在N/S掺杂介孔碳(NSC)上的原子分散的Fe-N x位点以及FeS@C核壳纳米粒子(FAS-NSC@950)。由于存在原位生长的导电石墨层(壳),FeS纳米颗粒(核)有效地调节单原子Fe位点的电子结构,并通过短程/长程耦合相互作用促进ORR动力学。因此,FAS-NSC@950 显示出 0.871 V 的更正半波电位 ( E 1/2 ),并显着增强 ORR 动力学(塔菲尔斜率 = 52.2 mV dec -1),超过了商用 Pt/C ( E 1 /2  = 0.84 V 且塔菲尔斜率 = 54.6 mV dec -1 )。作为一种双功能电催化剂,它表现出较小的双功能活性参数(Δ E)为0.673 V,超过了Pt/C-RuO 2组合(Δ E  = 0.724 V)。此外,FAS-NSC@950基锌空气电池(ZAB)比Pt/C-Ir/C基ZAB表现出优越的功率密度、比容量和长期循环性能。这项工作通过提供一种有前途的策略来增强 SAC 对 ORR 的催化活性,对该领域做出了重大贡献,并对能量转换和存储技术具有潜在影响。

更新日期:2023-12-14
down
wechat
bug