当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Stabilizing Cu+ Species in Cu2O/CuO Catalyst via Carbon Intermediate Confinement for Selective CO2RR
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-12-14 , DOI: 10.1002/adfm.202310913 Haojun Shi 1 , Lingli Luo 1 , Congcong Li 1 , Yu Li 1 , Tingting Zhang 1 , Zhongliang Liu 1 , Jialin Cui 1 , Li Gu 1 , Ling Zhang 1 , Yanjie Hu 1 , Huihui Li 1 , Chunzhong Li 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-12-14 , DOI: 10.1002/adfm.202310913 Haojun Shi 1 , Lingli Luo 1 , Congcong Li 1 , Yu Li 1 , Tingting Zhang 1 , Zhongliang Liu 1 , Jialin Cui 1 , Li Gu 1 , Ling Zhang 1 , Yanjie Hu 1 , Huihui Li 1 , Chunzhong Li 1
Affiliation
Copper oxide nanomaterials have been suggested to be efficient for highly selective multi-carbon (C2+) production in CO2 reduction reaction (CO2RR), due to the introduction of surface Cu+ species from oxide catalysts. However, the Cu+ species on the catalyst surface are prone to being reduced to Cu0 under reductive conditions during CO2RR. Here, a network-structured catalyst is developed consisting of ultrafine Cu2O/CuO nanoparticles that harbor an abundance of pores. This catalyst is synthesized via flame spray pyrolysis (FSP) method and engineered to confine carbon intermediates, which subsequently cover the local catalyst surface and stabilize Cu+ species. As a result, a C2+ products Faradaic efficiency (FE) of approximately 80.0% at a partial current density of 320.0 mA cm−2 is achieved, and a large C2+ to C1 ratio of ≈9.7. In situ XRD and XPS spectra are employed to reveal the indeed presence of Cu+ species on the catalyst surface during the CO2RR process, which extensively improves the adsorption of *CO intermediates and thus the C─C coupling reaction to form C2+ products.
中文翻译:
通过碳中间限制选择性 CO2RR 稳定 Cu2O/CuO 催化剂中的 Cu+ 物质
由于从氧化物催化剂引入了表面Cu +物质,氧化铜纳米材料已被认为对于CO 2还原反应(CO 2 RR)中高选择性多碳(C 2+ )生产是有效的。然而, CO 2 RR过程中,催化剂表面的Cu +物质在还原条件下容易被还原为Cu 0 。在这里,开发了一种由超细 Cu 2 O/CuO 纳米粒子组成的网络结构催化剂,该纳米粒子具有丰富的孔。该催化剂通过火焰喷射热解(FSP)方法合成,并设计用于限制碳中间体,随后覆盖局部催化剂表面并稳定 Cu +物质。结果,在320.0mA cm -2的部分电流密度下实现了约80.0%的C 2+产物法拉第效率(FE),并且实现了约9.7的大C 2+与C 1比率。采用原位 XRD 和 XPS 光谱揭示了CO 2 RR过程中催化剂表面确实存在 Cu +物质,这大大提高了* CO 中间体的吸附,从而促进 C─C 偶联反应形成 C 2+产品。
更新日期:2023-12-14
中文翻译:
通过碳中间限制选择性 CO2RR 稳定 Cu2O/CuO 催化剂中的 Cu+ 物质
由于从氧化物催化剂引入了表面Cu +物质,氧化铜纳米材料已被认为对于CO 2还原反应(CO 2 RR)中高选择性多碳(C 2+ )生产是有效的。然而, CO 2 RR过程中,催化剂表面的Cu +物质在还原条件下容易被还原为Cu 0 。在这里,开发了一种由超细 Cu 2 O/CuO 纳米粒子组成的网络结构催化剂,该纳米粒子具有丰富的孔。该催化剂通过火焰喷射热解(FSP)方法合成,并设计用于限制碳中间体,随后覆盖局部催化剂表面并稳定 Cu +物质。结果,在320.0mA cm -2的部分电流密度下实现了约80.0%的C 2+产物法拉第效率(FE),并且实现了约9.7的大C 2+与C 1比率。采用原位 XRD 和 XPS 光谱揭示了CO 2 RR过程中催化剂表面确实存在 Cu +物质,这大大提高了* CO 中间体的吸附,从而促进 C─C 偶联反应形成 C 2+产品。