当前位置: X-MOL 学术Sci. China Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient NAD+ regeneration facilitated by synergistically intensified charge generation and transfer in fullerene/porphyrin assemblies
Science China Materials ( IF 6.8 ) Pub Date : 2023-12-08 , DOI: 10.1007/s40843-023-2671-5
Ying Jiang , Chong Wang , Zihui Hua , Yupeng Song , Qiqige Wulan , Bo Wu , Chunru Wang

Enzymatic catalysis exhibits the merits of high catalytic rates and specificity, whereas a major obstacle that hampers commercialization is the need for expensive nicotinamide adenine dinucleotide (NAD+) cofactor; thus the regeneration of NAD+ is necessary. Here, we report a fullerene-based photocatalyst (C60-ZnTPP) capable of regenerating NAD+ through oxidation of NADH by photogenerated holes, accompanied by simultaneous hydrogen formation. Zinc meso-tetraphenylporphine (ZnTPP) and C60 are combined as a donor–acceptor (D–A) structure with a robust internal electric field (IEF, 5.67 times greater than that of ZnTPP), ensuring ultrafast (∼1 ps) and long-lived charge separation (>3 ns) and transfer, which is conducive to improving the performance of photocatalytic regeneration of NAD+. NADH is used as the sole hole sacrificial agent in the system, achieving up to 98.6% NAD+ regeneration within 5 h under visible light (≥420 nm) illumination. Equivalent oxidation of ethanol is catalyzed by alcohol dehydrogenase, a key enzyme in human alcohol metabolism, to verify the enzymatic activity of photocatalyzed NAD+. This work provides an extended choice of materials available for photocatalytic NAD+ regeneration, offering valuable insights into optimizing efficient cofactor regeneration pathways.



中文翻译:

通过协同强化富勒烯/卟啉组件中的电荷产生和转移促进高效 NAD+ 再生

酶催化具有催化速率高、特异性强等优点,但其商业化的主要障碍是需要昂贵的烟酰胺腺嘌呤二核苷酸(NAD +)辅因子;因此NAD +的再生是必要的。在这里,我们报道了一种基于富勒烯的光催化剂(C 60 -ZnTPP),能够通过光生空穴氧化NADH并同时形成氢气来再生NAD + 。内消旋四苯基卟吩锌 (ZnTPP) 和 C 60结合为供体-受体 (D-A) 结构,具有强大的内部电场(IEF,比 ZnTPP 大 5.67 倍),确保超快 (∼1 ps) 和长距离活的电荷分离(>3 ns)和转移,有利于提高NAD +的光催化再生性能。NADH作为系统中唯一的孔牺牲剂,在可见光(≥420 nm)照射下5小时内实现高达98.6%的NAD +再生。通过人体酒精代谢的关键酶乙醇脱氢酶催化乙醇的等价氧化,验证光催化NAD +的酶活性。这项工作为光催化 NAD +再生提供了更多的材料选择,为优化高效辅因子再生途径提供了宝贵的见解。

更新日期:2023-12-08
down
wechat
bug