当前位置:
X-MOL 学术
›
J. Agric. Food Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Production of Optically Pure (S)-3-Hydroxy-γ-butyrolactone from d-Xylose Using Engineered Escherichia coli
Journal of Agricultural and Food Chemistry ( IF 5.7 ) Pub Date : 2023-12-13 , DOI: 10.1021/acs.jafc.3c06589 Yujin Cao 1, 2, 3 , Wei Niu 4 , Jiantao Guo 4 , Jing Guo 1, 2, 3 , Hui Liu 1, 2, 3 , Huizhou Liu 1, 2, 3 , Mo Xian 1, 2, 3
Journal of Agricultural and Food Chemistry ( IF 5.7 ) Pub Date : 2023-12-13 , DOI: 10.1021/acs.jafc.3c06589 Yujin Cao 1, 2, 3 , Wei Niu 4 , Jiantao Guo 4 , Jing Guo 1, 2, 3 , Hui Liu 1, 2, 3 , Huizhou Liu 1, 2, 3 , Mo Xian 1, 2, 3
Affiliation
Biocatalysis has advantages in asymmetric synthesis due to the excellent stereoselectivity of enzymes. The present study established an efficient biosynthesis pathway for optically pure (S)-3-hydroxy-γ-butyrolactone [(S)-3HγBL] production using engineered Escherichia coli. We mimicked the 1,2,4-butanetriol biosynthesis route and constructed a five-step pathway consisting of d-xylose dehydrogenase, d-xylonolactonase, d-xylonate dehydratase, 2-keto acid decarboxylase, and aldehyde dehydrogenase. The engineered strain harboring the five enzymes could convert d-xylose to 3HγBL with glycerol as the carbon source. Stereochemical analysis by chiral GC proved that the microbially synthesized product was a single isomer, and the enantiomeric excess (ee) value reached 99.3%. (S)-3HγBL production was further enhanced by disrupting the branched pathways responsible for d-xylose uptake and intermediate reduction. Fed-batch fermentation of the best engineered strain showed the highest (S)-3HγBL titer of 3.5 g/L. The volumetric productivity and molar yield of (S)-3HγBL on d-xylose reached 50.6 mg/(L·h) and 52.1%, respectively. The final fermentation product was extracted, purified, and confirmed by NMR. This process utilized renewable d-xylose as the feedstock and offered an alternative approach for the production of the valuable chemical.
中文翻译:
使用工程大肠杆菌从 d-木糖生产光学纯 (S)-3-羟基-γ-丁内酯
由于酶具有优异的立体选择性,生物催化在不对称合成中具有优势。本研究建立了利用工程大肠杆菌生产光学纯 ( S )-3-羟基-γ-丁内酯 [( S )-3HγBL] 的有效生物合成途径。我们模仿1,2,4-丁三醇生物合成路线,构建了由d-木糖脱氢酶、 d-木糖内酯酶、 d-木糖酸脱水酶、2-酮酸脱羧酶和醛脱氢酶组成的五步途径。携带这五种酶的工程菌株可以以甘油为碳源将d-木糖转化为3HγBL。手性GC立体化学分析证明微生物合成产物为单一异构体,对映体过量(ee)值达到99.3%。通过破坏负责d-木糖摄取和中间体还原的分支途径,进一步增强了 ( S )-3HγBL 的产量。最佳工程菌株的补料分批发酵显示最高的( S )-3HγBL滴度为3.5 g/L。 ( S )-3HγBL对d-木糖的体积生产率和摩尔产率分别达到50.6 mg/(L·h)和52.1%。最终的发酵产物被提取、纯化并通过NMR确认。该工艺利用可再生的右旋木糖作为原料,为生产这种有价值的化学品提供了一种替代方法。
更新日期:2023-12-13
中文翻译:
使用工程大肠杆菌从 d-木糖生产光学纯 (S)-3-羟基-γ-丁内酯
由于酶具有优异的立体选择性,生物催化在不对称合成中具有优势。本研究建立了利用工程大肠杆菌生产光学纯 ( S )-3-羟基-γ-丁内酯 [( S )-3HγBL] 的有效生物合成途径。我们模仿1,2,4-丁三醇生物合成路线,构建了由d-木糖脱氢酶、 d-木糖内酯酶、 d-木糖酸脱水酶、2-酮酸脱羧酶和醛脱氢酶组成的五步途径。携带这五种酶的工程菌株可以以甘油为碳源将d-木糖转化为3HγBL。手性GC立体化学分析证明微生物合成产物为单一异构体,对映体过量(ee)值达到99.3%。通过破坏负责d-木糖摄取和中间体还原的分支途径,进一步增强了 ( S )-3HγBL 的产量。最佳工程菌株的补料分批发酵显示最高的( S )-3HγBL滴度为3.5 g/L。 ( S )-3HγBL对d-木糖的体积生产率和摩尔产率分别达到50.6 mg/(L·h)和52.1%。最终的发酵产物被提取、纯化并通过NMR确认。该工艺利用可再生的右旋木糖作为原料,为生产这种有价值的化学品提供了一种替代方法。