Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Stacking Engineering of Heterojunctions in Half-Metallic Carbon Nitride for Efficient CO2 Photoreduction
Advanced Science ( IF 14.3 ) Pub Date : 2023-12-10 , DOI: 10.1002/advs.202307192
Xingwang Zhu 1 , Hangmin Xu 1 , Jinyuan Liu 2 , Chuanzhou Bi 1 , Jianfeng Tian 1 , Kang Zhong 3 , Bin Wang 2, 3 , Penghui Ding 4 , Xiaozhi Wang 1 , Paul K Chu 2 , Hui Xu 3 , Jianning Ding 1
Advanced Science ( IF 14.3 ) Pub Date : 2023-12-10 , DOI: 10.1002/advs.202307192
Xingwang Zhu 1 , Hangmin Xu 1 , Jinyuan Liu 2 , Chuanzhou Bi 1 , Jianfeng Tian 1 , Kang Zhong 3 , Bin Wang 2, 3 , Penghui Ding 4 , Xiaozhi Wang 1 , Paul K Chu 2 , Hui Xu 3 , Jianning Ding 1
Affiliation
![]() |
Enhancing charge separation in semiconductor photocatalysts is a major challenge for efficient artificial photosynthesis. Herein, a compact heterojunction is designed by embedding half-metallic C(CN)3 (hm-CN) hydrothermally in BiOBr (BOB) as the backbone. The interface between hm-CN and BOB is seamless and formed by covalent bonding to facilitate the transmission of photoinduced electrons from BOB to hm-CN. The transient photocurrents and electrochemical impedance spectra reveal that the modified composite catalyst exhibits a larger electron transfer rate. The photocatalytic activity of hm-CN/BOB increases significantly as indicated by a CO yield that is about four times higher than that of individual components. Density-functional theory calculations verify that the heterojunction improves electron transport and decreases the reaction energy barrier, thus promoting the overall photocatalytic CO2 conversion efficiency. The half-metal nitride coupled semiconductor heterojunctions might have large potential in artificial photosynthesis and related applications.
中文翻译:
用于高效 CO2 光还原的半金属碳氮化物异质结堆叠工程
增强半导体光催化剂中的电荷分离是高效人工光合作用的主要挑战。在此,通过将半金属C(CN) 3 (hm-CN)水热嵌入BiOBr (BOB)作为主链来设计紧凑的异质结。 hm-CN 和 BOB 之间的界面是无缝的,通过共价键合形成,有利于光生电子从 BOB 传输到 hm-CN。瞬态光电流和电化学阻抗谱表明,改性复合催化剂表现出更大的电子转移速率。 hm-CN/BOB 的光催化活性显着增加,CO 产量比单个组分高约四倍。密度泛函理论计算验证了异质结改善了电子传输并降低了反应能垒,从而提高了光催化CO 2的整体转化效率。半金属氮化物耦合半导体异质结在人工光合作用及相关应用中可能具有巨大潜力。
更新日期:2023-12-10
中文翻译:

用于高效 CO2 光还原的半金属碳氮化物异质结堆叠工程
增强半导体光催化剂中的电荷分离是高效人工光合作用的主要挑战。在此,通过将半金属C(CN) 3 (hm-CN)水热嵌入BiOBr (BOB)作为主链来设计紧凑的异质结。 hm-CN 和 BOB 之间的界面是无缝的,通过共价键合形成,有利于光生电子从 BOB 传输到 hm-CN。瞬态光电流和电化学阻抗谱表明,改性复合催化剂表现出更大的电子转移速率。 hm-CN/BOB 的光催化活性显着增加,CO 产量比单个组分高约四倍。密度泛函理论计算验证了异质结改善了电子传输并降低了反应能垒,从而提高了光催化CO 2的整体转化效率。半金属氮化物耦合半导体异质结在人工光合作用及相关应用中可能具有巨大潜力。