当前位置:
X-MOL 学术
›
Combust. Flame
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
An experimental and chemical kinetic modeling study of octane isomer oxidation. Part 1: 2,3,4-trimethyl pentane
Combustion and Flame ( IF 5.8 ) Pub Date : 2023-12-11 , DOI: 10.1016/j.combustflame.2023.113226 Yijun Heng , Gavin Kenny , Pengzhi Wang , Shijun Dong , Manik Kumer Ghosh , Gesheng Li , Junjie Liang , Henry J. Curran
Combustion and Flame ( IF 5.8 ) Pub Date : 2023-12-11 , DOI: 10.1016/j.combustflame.2023.113226 Yijun Heng , Gavin Kenny , Pengzhi Wang , Shijun Dong , Manik Kumer Ghosh , Gesheng Li , Junjie Liang , Henry J. Curran
2,3,4-trimethyl pentane (234-TMP) is an isomer of octane with the same number of methyl branching groups as 2,2,4-trimethyl pentane (-octane). However, there are very few studies of this fuel available in the literature. In this work, a detailed chemical kinetic model is developed to describe the oxidation of 234-TMP using NUIGMech1.3 as the core mechanism. The rate constants for some important reaction classes are updated following a review of literature rate constants. Additionally, the impact of each rate constant on simulated ignition delay times for 234-TMP compared to 2,2,3-trimethyl pentane and 2,2,4-trimethyl pentane (-octane) is discussed. The thermodynamic data of the alkanes (RH), alkyl (Ṙ), alkyl peroxy (RȮ), hydroperoxy-alkyl OOH, and peroxy hydroperoxyalkyl (ȮQOOH) radicals are newly estimated based on recently updated group values in the literature. Moreover, this study presents the first set of data available for the oxidation of 234-TMP at higher pressures (15 and 30 atm), in the temperature range 600–1600 K, and at fuel/‘air’ equivalence ratios () of 0.5, 1.0 and 2.0. The chemical kinetic model shows general good agreement with the experimental measurements. In addition, flux and sensitivity analyses are conducted to identify the important pathways and reactions controlling fuel oxidation at different temperatures. Furthermore, the reactivity of 234-TMP is compared to that of -octane, indicating that 234-TMP is slower to react as it has more tertiary carbon sites compared to -octane.
中文翻译:
辛烷异构体氧化的实验和化学动力学模型研究。第 1 部分:2,3,4-三甲基戊烷
2,3,4-三甲基戊烷 (234-TMP) 是辛烷的异构体,具有与 2,2,4-三甲基戊烷 (-辛烷) 相同数量的甲基支化基团。然而,文献中对此燃料的研究很少。在这项工作中,使用 NUIGMech1.3 作为核心机制,开发了详细的化学动力学模型来描述 234-TMP 的氧化。在回顾文献速率常数后,更新了一些重要反应类别的速率常数。此外,还讨论了与 2,2,3-三甲基戊烷和 2,2,4-三甲基戊烷(辛烷)相比,每个速率常数对 234-TMP 模拟点火延迟时间的影响。烷烃 (RH)、烷基 (Ṙ)、烷基过氧 (R?)、氢过氧烷基 OOH 和过氧氢过氧烷基 (?QOOH) 自由基的热力学数据是根据文献中最近更新的基团值重新估计的。此外,本研究提供了第一组可用于 234-TMP 在较高压力(15 和 30 atm)、温度范围 600–1600 K 以及燃料/“空气”当量比 () 为 0.5 下氧化的数据。 、1.0 和 2.0。化学动力学模型与实验测量结果总体吻合良好。此外,还进行通量和灵敏度分析,以确定不同温度下控制燃料氧化的重要途径和反应。此外,将234-TMP的反应性与正辛烷的反应性进行比较,表明234-TMP的反应速度较慢,因为与正辛烷相比,234-TMP具有更多的叔碳位点。
更新日期:2023-12-11
中文翻译:
辛烷异构体氧化的实验和化学动力学模型研究。第 1 部分:2,3,4-三甲基戊烷
2,3,4-三甲基戊烷 (234-TMP) 是辛烷的异构体,具有与 2,2,4-三甲基戊烷 (-辛烷) 相同数量的甲基支化基团。然而,文献中对此燃料的研究很少。在这项工作中,使用 NUIGMech1.3 作为核心机制,开发了详细的化学动力学模型来描述 234-TMP 的氧化。在回顾文献速率常数后,更新了一些重要反应类别的速率常数。此外,还讨论了与 2,2,3-三甲基戊烷和 2,2,4-三甲基戊烷(辛烷)相比,每个速率常数对 234-TMP 模拟点火延迟时间的影响。烷烃 (RH)、烷基 (Ṙ)、烷基过氧 (R?)、氢过氧烷基 OOH 和过氧氢过氧烷基 (?QOOH) 自由基的热力学数据是根据文献中最近更新的基团值重新估计的。此外,本研究提供了第一组可用于 234-TMP 在较高压力(15 和 30 atm)、温度范围 600–1600 K 以及燃料/“空气”当量比 () 为 0.5 下氧化的数据。 、1.0 和 2.0。化学动力学模型与实验测量结果总体吻合良好。此外,还进行通量和灵敏度分析,以确定不同温度下控制燃料氧化的重要途径和反应。此外,将234-TMP的反应性与正辛烷的反应性进行比较,表明234-TMP的反应速度较慢,因为与正辛烷相比,234-TMP具有更多的叔碳位点。