当前位置:
X-MOL 学术
›
Cryst. Growth Des.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Atomic-Scale Structural Evolution and Characterization of Molybdenum Carbide Nanoparticles Grown from MoO3 and MoS2: High-Resolution In Situ ETEM and EELS
Crystal Growth & Design ( IF 3.2 ) Pub Date : 2023-12-08 , DOI: 10.1021/acs.cgd.3c01196 Wenbin Huang 1 , Kaixin Deng 2 , Qiang Wei 1 , Yasong Zhou 1
Crystal Growth & Design ( IF 3.2 ) Pub Date : 2023-12-08 , DOI: 10.1021/acs.cgd.3c01196 Wenbin Huang 1 , Kaixin Deng 2 , Qiang Wei 1 , Yasong Zhou 1
Affiliation
The transformation mechanism of different types of molybdenum compounds into molybdenum carbide was explored by a classical temperature-programmed reduction carbonization method. The structure, morphology, and chemical state of molybdenum carbide nanoparticles during high-temperature growth were studied using in situ characterization at the atomic level, based on which the nucleation mechanism and transition behavior of molybdenum carbide nanoparticles were investigated. It was found that when MoO3 and MoO2 were used to prepare molybdenum carbide nanoparticles, the reaction processes of MoO2 (locally formed MoCxOy) into MoOx, Mo, and Mo2C were successively observed from the microscopic point of view. However, under the same preparation conditions, both Mo2C and MoC crystal forms were obtained using molybdenum sulfide as a precursor, and a small amount of unreacted molybdenum sulfide remained in the product. The low melting point of molybdenum oxide was more conducive to the gas phase transport of atoms, which can form molybdenum carbide crystal nucleus through the deoxidation and carburization process. However, molybdenum sulfide with larger spacing between atomic layers can be directly replaced by a C atom isocrystalline, and the initial product Mo2C can be further carburized to form MoC with higher carbon content.
中文翻译:
MoO3 和 MoS2 生长的碳化钼纳米颗粒的原子尺度结构演化和表征:高分辨率原位 ETEM 和 EELS
采用经典的程序升温还原碳化方法探讨了不同类型钼化合物向碳化钼的转变机理。利用原子水平的原位表征方法研究了碳化钼纳米粒子在高温生长过程中的结构、形貌和化学状态,并在此基础上研究了碳化钼纳米粒子的成核机制和转变行为。研究发现,当用MoO 3和MoO 2制备碳化钼纳米粒子时,从微观角度依次观察到MoO 2 (局部形成的MoC x O y )生成MoO x、Mo和Mo 2 C的反应过程。看法。但在相同的制备条件下,以硫化钼为前驱体得到Mo 2 C和MoC晶型,且产物中残留有少量未反应的硫化钼。氧化钼的低熔点更有利于原子的气相传输,通过脱氧和渗碳过程可以形成碳化钼晶核。然而,原子层间距较大的硫化钼可以直接被C原子同晶取代,并且初始产物Mo 2 C可以进一步渗碳,形成碳含量更高的MoC。
更新日期:2023-12-08
中文翻译:
MoO3 和 MoS2 生长的碳化钼纳米颗粒的原子尺度结构演化和表征:高分辨率原位 ETEM 和 EELS
采用经典的程序升温还原碳化方法探讨了不同类型钼化合物向碳化钼的转变机理。利用原子水平的原位表征方法研究了碳化钼纳米粒子在高温生长过程中的结构、形貌和化学状态,并在此基础上研究了碳化钼纳米粒子的成核机制和转变行为。研究发现,当用MoO 3和MoO 2制备碳化钼纳米粒子时,从微观角度依次观察到MoO 2 (局部形成的MoC x O y )生成MoO x、Mo和Mo 2 C的反应过程。看法。但在相同的制备条件下,以硫化钼为前驱体得到Mo 2 C和MoC晶型,且产物中残留有少量未反应的硫化钼。氧化钼的低熔点更有利于原子的气相传输,通过脱氧和渗碳过程可以形成碳化钼晶核。然而,原子层间距较大的硫化钼可以直接被C原子同晶取代,并且初始产物Mo 2 C可以进一步渗碳,形成碳含量更高的MoC。