当前位置:
X-MOL 学术
›
Chem. Eng. J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Structural reinforced NaTi2(PO4)3 composite by pillar effects for constructing a high-performance rocking-chair desalination battery
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-12-10 , DOI: 10.1016/j.cej.2023.147965
Yuliang Wu , Qian Zou , Chaolin Li , Wenhui Wang
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-12-10 , DOI: 10.1016/j.cej.2023.147965
Yuliang Wu , Qian Zou , Chaolin Li , Wenhui Wang
![]() |
Battery deionization (BDI) technique has attracted great attention as a potential candidate to tackle the freshwater crisis, but its application is plagued by the lack of electrode materials with large desalination capacity and excellent durability. Herein, Mn dopant-reinforced NaTi2 (PO4 )3 (NT2–x Mx P) composites with significantly enhanced structural stability and electronic/ionic conductivity were fabricated toward seawater desalination. Especially, the NT1.5 M0.5 P exhibits excellent desalination performance, affording a salt removal capacity (SRC) of 128.5 mg/g with a salt removal rate (SRR) of 18.4 mg g−1 min−1 and almost no capacity attenuation after 500 cycles. Furthermore, the NT1.5 M0.5 P further possesses favorable technical feasibility in different aqueous media, including desalination at various NaCl concentrations, temperature, solution pH, and natural seawater. Mechanism studies reveal that the NT1.5 M0.5 P undergoes a solid-solution reaction based on the reversible electrochemical reaction of the Ti4+ /Ti3+ redox pair during the desalination/salination process. A rocking-chair desalination battery consisting of NT1.5 M0.5 P and NaFeHCF demonstrates a favorable desalination ability (average SRC of 49.4 mg/g and SRR of 1.73 mg g−1 min−1 ), outstanding cycling stability (92 % of capacity retention in 100 cycles), low energy consumption (0.288 kWh/kg-NaCl) and high average charging efficiency (86.9 %). This work sheds light on the rational design of advanced NASICON-type electrodes for seawater desalination with remarkable desalination capacity and long serving life.
中文翻译:
利用柱效应结构增强NaTi2(PO4)3复合材料构建高性能摇椅式海水淡化电池
电池去离子(BDI)技术作为解决淡水危机的潜在候选技术受到了广泛关注,但其应用因缺乏具有大脱盐能力和优异耐久性的电极材料而受到困扰。在此,制备了Mn掺杂剂增强的NaTi2(PO4)3 (NT2–xMxP)复合材料,其结构稳定性和电子/离子电导率显着增强,用于海水淡化。特别是NT1.5M0.5P表现出优异的脱盐性能,除盐能力(SRC)为128.5 mg/g,除盐率(SRR)为18.4 mg g−1 min−1,并且在500次后几乎没有容量衰减。循环。此外,NT1.5M0.5P在不同的水介质中还具有良好的技术可行性,包括在各种氯化钠浓度、温度、溶液pH值和天然海水下的脱盐。机理研究表明,NT1.5M0.5P在海水淡化/盐化过程中会发生基于Ti4+/Ti3+氧化还原对可逆电化学反应的固溶反应。由NT1.5M0.5P和NaFeHCF组成的摇椅式海水淡化电池表现出良好的海水淡化能力(平均SRC为49.4 mg/g,SRR为1.73 mg g−1 min−1),出色的循环稳定性(92%的容量保持率) 100 次循环)、低能耗(0.288 kWh/kg-NaCl)和高平均充电效率(86.9%)。这项工作揭示了先进的NASICON型海水淡化电极的合理设计,具有显着的淡化能力和较长的使用寿命。
更新日期:2023-12-10
中文翻译:

利用柱效应结构增强NaTi2(PO4)3复合材料构建高性能摇椅式海水淡化电池
电池去离子(BDI)技术作为解决淡水危机的潜在候选技术受到了广泛关注,但其应用因缺乏具有大脱盐能力和优异耐久性的电极材料而受到困扰。在此,制备了Mn掺杂剂增强的NaTi2(PO4)3 (NT2–xMxP)复合材料,其结构稳定性和电子/离子电导率显着增强,用于海水淡化。特别是NT1.5M0.5P表现出优异的脱盐性能,除盐能力(SRC)为128.5 mg/g,除盐率(SRR)为18.4 mg g−1 min−1,并且在500次后几乎没有容量衰减。循环。此外,NT1.5M0.5P在不同的水介质中还具有良好的技术可行性,包括在各种氯化钠浓度、温度、溶液pH值和天然海水下的脱盐。机理研究表明,NT1.5M0.5P在海水淡化/盐化过程中会发生基于Ti4+/Ti3+氧化还原对可逆电化学反应的固溶反应。由NT1.5M0.5P和NaFeHCF组成的摇椅式海水淡化电池表现出良好的海水淡化能力(平均SRC为49.4 mg/g,SRR为1.73 mg g−1 min−1),出色的循环稳定性(92%的容量保持率) 100 次循环)、低能耗(0.288 kWh/kg-NaCl)和高平均充电效率(86.9%)。这项工作揭示了先进的NASICON型海水淡化电极的合理设计,具有显着的淡化能力和较长的使用寿命。